Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2023, Volume 64, Number 3, Pages 635–652
DOI: https://doi.org/10.33048/smzh.2023.64.314
(Mi smj7786)
 

This article is cited in 2 scientific papers (total in 2 papers)

An inverse problem for the wave equation with nonlinear dumping

V. G. Romanov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Full-text PDF (346 kB) Citations (2)
References:
Abstract: We study the inverse problem of recovering a coefficient at the nonlinearity in a second order hyperbolic equation with nonlinear damping. The unknown coefficient depends on one space variable $x$. Also, we consider the process of wave propagation along the semiaxis $x>0$ given the derivative with respect to $x$ at $x=0$. As additional information in the inverse problem we consider the trace of a solution to the initial boundary value problem on a finite segment of the axis $x=0$ and find the conditions for unique solvability of the direct problem. We also establish a local existence theorem and a global stability estimate for a solution to the inverse problem.
Keywords: nonlinear wave equation, inverse problem, existence of solutions, stability estimate.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-281
Received: 09.03.2023
Revised: 09.03.2023
Accepted: 06.04.2023
Document Type: Article
UDC: 517.946
MSC: 35R30
Language: Russian
Citation: V. G. Romanov, “An inverse problem for the wave equation with nonlinear dumping”, Sibirsk. Mat. Zh., 64:3 (2023), 635–652
Citation in format AMSBIB
\Bibitem{Rom23}
\by V.~G.~Romanov
\paper An inverse problem for the wave equation with nonlinear dumping
\jour Sibirsk. Mat. Zh.
\yr 2023
\vol 64
\issue 3
\pages 635--652
\mathnet{http://mi.mathnet.ru/smj7786}
\crossref{https://doi.org/10.33048/smzh.2023.64.314}
Linking options:
  • https://www.mathnet.ru/eng/smj7786
  • https://www.mathnet.ru/eng/smj/v64/i3/p635
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:177
    Full-text PDF :23
    References:40
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024