Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2023, Volume 64, Number 3, Pages 540–545
DOI: https://doi.org/10.33048/smzh.2023.64.307
(Mi smj7779)
 

This article is cited in 3 scientific papers (total in 3 papers)

On the intermediate values of the box dimensions

A. V. Ivanov

Institute of Applied Mathematical Research of the Karelian Research Centre RAS, Petrozavodsk
Full-text PDF (279 kB) Citations (3)
References:
Abstract: We address the following question: Is it true that, for every metric compactum $X$ of box dimension $\dim_BX=a\leq\infty$ and every two reals $\alpha$ and $\beta$ such that $0\leq\alpha\leq\beta\leq a$, there exists a closed subset in $X$ whose lower box dimension is $\alpha$ and whose upper box dimension is $\beta$? We give the positive answer for $\alpha=0$. In the general case, this result is final. We construct an example of a metric compactum whose box dimension is $1$ but every nonempty proper closed subset of the compactum has lower box dimension $0$.
Keywords: metric compactum, box dimension, intermediate values, counterexample.
Received: 16.01.2023
Revised: 03.02.2023
Accepted: 21.02.2023
Document Type: Article
UDC: 515.12
MSC: 35R30
Language: Russian
Citation: A. V. Ivanov, “On the intermediate values of the box dimensions”, Sibirsk. Mat. Zh., 64:3 (2023), 540–545
Citation in format AMSBIB
\Bibitem{Iva23}
\by A.~V.~Ivanov
\paper On~the intermediate values of the box dimensions
\jour Sibirsk. Mat. Zh.
\yr 2023
\vol 64
\issue 3
\pages 540--545
\mathnet{http://mi.mathnet.ru/smj7779}
\crossref{https://doi.org/10.33048/smzh.2023.64.307}
Linking options:
  • https://www.mathnet.ru/eng/smj7779
  • https://www.mathnet.ru/eng/smj/v64/i3/p540
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:113
    Full-text PDF :11
    References:27
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024