Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2023, Volume 64, Number 2, Pages 441–448
DOI: https://doi.org/10.33048/smzh.2023.64.214
(Mi smj7771)
 

On the $t$-equivalence of generalized ordered sets

N. N. Trofimenko, T. E. Khmyleva

Tomsk State University
References:
Abstract: We consider the generalized ordered spaces $X$ and $Y$ such that the tightness $t(X)$ coincides with the tightness $t(Y)$ but $T(X)=\{x\in X : t(x, X)=t(X)\}$ and $T(Y)=\{y\in Y : t(y, Y)=t(Y)\}$ have different cardinalities. Some sufficient conditions are found under which such spaces $X$ and $Y$ are not $t$-equivalent.
Keywords: ordered topological spaces, cofinal subsets, regular ordinals, tightness, functional tightness, Hewitt completion, homeomorphism, topology of pointwise convergence.
Received: 08.06.2022
Revised: 22.08.2022
Accepted: 10.10.2022
English version:
Siberian Mathematical Journal, 2023, Volume 64, Issue 2, Pages 424–430
DOI: https://doi.org/10.1134/S0037446623020143
Document Type: Article
UDC: 515.129
MSC: 35R30
Language: Russian
Citation: N. N. Trofimenko, T. E. Khmyleva, “On the $t$-equivalence of generalized ordered sets”, Sibirsk. Mat. Zh., 64:2 (2023), 441–448; Siberian Math. J., 64:2 (2023), 424–430
Citation in format AMSBIB
\Bibitem{TroKhm23}
\by N.~N.~Trofimenko, T.~E.~Khmyleva
\paper On the $t$-equivalence of~generalized ordered sets
\jour Sibirsk. Mat. Zh.
\yr 2023
\vol 64
\issue 2
\pages 441--448
\mathnet{http://mi.mathnet.ru/smj7771}
\crossref{https://doi.org/10.33048/smzh.2023.64.214}
\transl
\jour Siberian Math. J.
\yr 2023
\vol 64
\issue 2
\pages 424--430
\crossref{https://doi.org/10.1134/S0037446623020143}
Linking options:
  • https://www.mathnet.ru/eng/smj7771
  • https://www.mathnet.ru/eng/smj/v64/i2/p441
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:81
    Full-text PDF :15
    References:20
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024