Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2023, Volume 64, Number 2, Pages 350–361
DOI: https://doi.org/10.33048/smzh.2023.64.209
(Mi smj7766)
 

Spectral properties of strongly bounded operators

E. V. Mel'nikov

Omsk State University
References:
Abstract: We show that strongly bounded operators in locally convex spaces and topological vector spaces under some additional conditions have the spectral properties similar to those of bounded operators in normed spaces. Such operator enjoys the Berling–Gelfand formula in a sequentially complete locally convex space.
Keywords: topological vector spaces, locally convex spaces, strongly bounded operators, resolvent, spectrum, spectral radius.
Received: 27.02.2022
Revised: 27.06.2022
Accepted: 15.08.2022
English version:
Siberian Mathematical Journal, 2023, Volume 64, Issue 2, Pages 347–355
DOI: https://doi.org/10.1134/S003744662302009X
Document Type: Article
UDC: 517.983:517.986
Language: Russian
Citation: E. V. Mel'nikov, “Spectral properties of strongly bounded operators”, Sibirsk. Mat. Zh., 64:2 (2023), 350–361; Siberian Math. J., 64:2 (2023), 347–355
Citation in format AMSBIB
\Bibitem{Mel23}
\by E.~V.~Mel'nikov
\paper Spectral properties of strongly bounded operators
\jour Sibirsk. Mat. Zh.
\yr 2023
\vol 64
\issue 2
\pages 350--361
\mathnet{http://mi.mathnet.ru/smj7766}
\crossref{https://doi.org/10.33048/smzh.2023.64.209}
\transl
\jour Siberian Math. J.
\yr 2023
\vol 64
\issue 2
\pages 347--355
\crossref{https://doi.org/10.1134/S003744662302009X}
Linking options:
  • https://www.mathnet.ru/eng/smj7766
  • https://www.mathnet.ru/eng/smj/v64/i2/p350
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:79
    Full-text PDF :19
    References:22
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024