Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2023, Volume 64, Number 2, Pages 339–349
DOI: https://doi.org/10.33048/smzh.2023.64.208
(Mi smj7765)
 

This article is cited in 1 scientific paper (total in 1 paper)

The uniform convergence of Fourier series in a system of polynomials orthogonal in the sense of Sobolev and associated to Jacobi polynomials

M. G. Magomed-Kasumovab

a Daghestan Scientific Centre of Russian Academy of Sciences, Makhachkala
b Vladikavkaz Scientific Centre of the Russian Academy of Sciences
Full-text PDF (334 kB) Citations (1)
References:
Abstract: We establish that the Fourier series in the Sobolev system of polynomials ${\mathcal P}_r^{\alpha,\beta}$, with $-1 < \alpha,\beta \le 0$, associated to the Jacobi polynomials converge uniformly on $[-1,1]$ to functions in the Sobolev space $W^r_{L^1_{\rho(\alpha,\beta)}}$, where $\rho(\alpha,\beta)$ is the Jacobi weight. We show also that the Fourier series converges in the norm of the Sobolev space $W^r_{L^p_{\rho(A,B)}}$ with $p>1$ under the Muckenhoupt conditions.
Keywords: Sobolev inner product, Jacobi polynomials, Fourier series, uniform convergence, Sobolev space, Muckenhoupt conditions.
Received: 15.07.2022
Revised: 08.10.2022
Accepted: 07.11.2022
English version:
Siberian Mathematical Journal, 2023, Volume 64, Issue 2, Pages 338–346
DOI: https://doi.org/10.1134/S0037446623020088
Bibliographic databases:
Document Type: Article
UDC: 517
MSC: 35R30
Language: Russian
Citation: M. G. Magomed-Kasumov, “The uniform convergence of Fourier series in a system of polynomials orthogonal in the sense of Sobolev and associated to Jacobi polynomials”, Sibirsk. Mat. Zh., 64:2 (2023), 339–349; Siberian Math. J., 64:2 (2023), 338–346
Citation in format AMSBIB
\Bibitem{Mag23}
\by M.~G.~Magomed-Kasumov
\paper The uniform convergence of Fourier series in a~system of polynomials orthogonal in the sense of Sobolev and associated to Jacobi polynomials
\jour Sibirsk. Mat. Zh.
\yr 2023
\vol 64
\issue 2
\pages 339--349
\mathnet{http://mi.mathnet.ru/smj7765}
\crossref{https://doi.org/10.33048/smzh.2023.64.208}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4567668}
\transl
\jour Siberian Math. J.
\yr 2023
\vol 64
\issue 2
\pages 338--346
\crossref{https://doi.org/10.1134/S0037446623020088}
Linking options:
  • https://www.mathnet.ru/eng/smj7765
  • https://www.mathnet.ru/eng/smj/v64/i2/p339
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024