Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2023, Volume 64, Number 2, Pages 292–311
DOI: https://doi.org/10.33048/smzh.2023.64.205
(Mi smj7762)
 

Enveloping algebras and ideals of the niltriangular subalgebra of the Chevalley algebra

G. P. Egorycheva, V. M. Levchuka, G. S. Suleimanovab, N. D. Hodyunyaa

a Institute of Mathematics and Computer Science, Siberian Federal University, Krasnoyarsk
b Khakas Technical Institute
References:
Abstract: A simple complex Lie algebra is characterized by a root system $\Phi$ and a Chevalley basis with the integer structure constants. The well-known arbitrariness of their choice for the niltriangular subalgebra $N\Phi(C)$ essentially affects the Lie-admissible algebra $R_\Phi$ (in the sense of Albert) over a field $K$ such that $R_\Phi^{(-)}\simeq N\Phi(K)$. We study the uniqueness of the (nonassociative) enveloping algebras $R_\Phi$ of classical types. The enumeration of ideals of the Lie algebras $N\Phi(K)$ and $R_\Phi$ for $K=GF(q)$ leads to the solution of some combinatorial problem listed in ACM SIGSAM Bulletin in 2001. The calculations of multiple combinatorial sums with $q$-binomial coefficient use the integral representation method of combinatorial sums (the coefficient method).
Keywords: Chevalley algebra, niltriangular subalgebra, enveloping algebra, $B_n^+$-matrix, standard ideal, integral representations of combinatorial sums, $q$-binomial coefficient.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2022-867
The work was supported by the Krasnoyarsk Mathematical Center financed by the Ministry of Science and Higher Education of the Russian Federation in the framework of the establishment and development of the Regional Centers for Mathematics Research and Education (Agreement 075–02–2022–867).
Received: 16.04.2022
Revised: 03.10.2022
Accepted: 10.10.2022
English version:
Siberian Mathematical Journal, 2023, Volume 64, Issue 2, Pages 300–317
DOI: https://doi.org/10.1134/S0037446623020052
Bibliographic databases:
Document Type: Article
UDC: 519.11+512.554.3
MSC: 35R30
Language: Russian
Citation: G. P. Egorychev, V. M. Levchuk, G. S. Suleimanova, N. D. Hodyunya, “Enveloping algebras and ideals of the niltriangular subalgebra of the Chevalley algebra”, Sibirsk. Mat. Zh., 64:2 (2023), 292–311; Siberian Math. J., 64:2 (2023), 300–317
Citation in format AMSBIB
\Bibitem{EgoLevSul23}
\by G.~P.~Egorychev, V.~M.~Levchuk, G.~S.~Suleimanova, N.~D.~Hodyunya
\paper Enveloping algebras and ideals of the niltriangular subalgebra of the Chevalley algebra
\jour Sibirsk. Mat. Zh.
\yr 2023
\vol 64
\issue 2
\pages 292--311
\mathnet{http://mi.mathnet.ru/smj7762}
\crossref{https://doi.org/10.33048/smzh.2023.64.205}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4567665}
\transl
\jour Siberian Math. J.
\yr 2023
\vol 64
\issue 2
\pages 300--317
\crossref{https://doi.org/10.1134/S0037446623020052}
Linking options:
  • https://www.mathnet.ru/eng/smj7762
  • https://www.mathnet.ru/eng/smj/v64/i2/p292
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ñèáèðñêèé ìàòåìàòè÷åñêèé æóðíàë Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:92
    Full-text PDF :24
    References:19
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024