Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2023, Volume 64, Number 2, Pages 276–280
DOI: https://doi.org/10.33048/smzh.2023.64.203
(Mi smj7760)
 

This article is cited in 1 scientific paper (total in 1 paper)

The structure of the linearizer of a connected complex Lie group

O. Yu. Aristov
Full-text PDF (261 kB) Citations (1)
References:
Abstract: The Morimoto theorem states that each connected abelian complex Lie group $A$ can be decomposed into the direct product of a group on which all holomorphic functions are constant, finitely many copies of ${\Bbb C}^\times$, and a vector group. We prove that if $A$ is the complex linearizer of a connected complex Lie group then the last factor of the product is trivial.
Keywords: complex Lie group, linearizer, Morimoto subgroup.
Received: 04.04.2022
Revised: 29.11.2022
Accepted: 10.01.2023
English version:
Siberian Mathematical Journal, 2023, Volume 64, Issue 2, Pages 287–290
DOI: https://doi.org/10.1134/S0037446623020039
Document Type: Article
UDC: 512.812.4
MSC: 35R30
Language: Russian
Citation: O. Yu. Aristov, “The structure of the linearizer of a connected complex Lie group”, Sibirsk. Mat. Zh., 64:2 (2023), 276–280; Siberian Math. J., 64:2 (2023), 287–290
Citation in format AMSBIB
\Bibitem{Ari23}
\by O.~Yu.~Aristov
\paper The structure of the linearizer of a~connected complex Lie group
\jour Sibirsk. Mat. Zh.
\yr 2023
\vol 64
\issue 2
\pages 276--280
\mathnet{http://mi.mathnet.ru/smj7760}
\crossref{https://doi.org/10.33048/smzh.2023.64.203}
\transl
\jour Siberian Math. J.
\yr 2023
\vol 64
\issue 2
\pages 287--290
\crossref{https://doi.org/10.1134/S0037446623020039}
Linking options:
  • https://www.mathnet.ru/eng/smj7760
  • https://www.mathnet.ru/eng/smj/v64/i2/p276
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024