Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2023, Volume 64, Number 1, Pages 123–132
DOI: https://doi.org/10.33048/smzh.2023.64.112
(Mi smj7751)
 

This article is cited in 2 scientific papers (total in 2 papers)

On the number of irreducible components of the moduli space of semistable reflexive rank 2 sheaves on the projective space

A. A. Kytmanovab, N. N. Osipovc, S. A. Tikhomirovd

a Plekhanov Russian State University of Economics, Moscow
b MIREA — Russian Technological University, Moscow
c Siberian Federal University, Krasnoyarsk
d Yaroslavl State Pedagogical University named after K. D. Ushinsky
Full-text PDF (360 kB) Citations (2)
References:
Abstract: In 2017, Jardim, Markushevich, and Tikhomirov found a new infinite series of irreducible components of the moduli space of semistable nonlocally free reflexive rank 2 sheaves on the complex three-dimensional projective space with even first Chern class whose second and third Chern classes can be represented as polynomials of a special form in three integer variables. A similar series for reflexive sheaves with odd first Chern class was found in 2022 by Almeida, Jardim, and Tikhomirov. In this article, we prove the uniqueness of the components in these series for the Chern classes represented by the above-mentioned polynomials and propose some criteria for the existence of these components. We formulate a conjecture on the number of components of the moduli space of stable rank 2 sheaves on a three-dimensional projective space such that the generic points of these components correspond to isomorphism classes of reflexive sheaves with fixed Chern classes defined by the same polynomials.
Keywords: semistable reflexive sheaf, Chern classes, moduli space.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2022-876
This work is supported by the Krasnoyarsk Mathematical Center and financed by the Ministry of Science and Higher Education of the Russian Federation (Agreement 075–02–2022–876).
Received: 28.09.2021
Revised: 30.09.2022
Accepted: 10.10.2022
English version:
Siberian Mathematical Journal, 2023, Volume 64, Issue 1, Pages 103–110
DOI: https://doi.org/10.1134/S0037446623010123
Document Type: Article
UDC: 512.7
MSC: 35R30
Language: Russian
Citation: A. A. Kytmanov, N. N. Osipov, S. A. Tikhomirov, “On the number of irreducible components of the moduli space of semistable reflexive rank 2 sheaves on the projective space”, Sibirsk. Mat. Zh., 64:1 (2023), 123–132; Siberian Math. J., 64:1 (2023), 103–110
Citation in format AMSBIB
\Bibitem{KytOsiTik23}
\by A.~A.~Kytmanov, N.~N.~Osipov, S.~A.~Tikhomirov
\paper On~the number of irreducible components of the moduli space of semistable reflexive rank~2 sheaves on~the projective space
\jour Sibirsk. Mat. Zh.
\yr 2023
\vol 64
\issue 1
\pages 123--132
\mathnet{http://mi.mathnet.ru/smj7751}
\crossref{https://doi.org/10.33048/smzh.2023.64.112}
\transl
\jour Siberian Math. J.
\yr 2023
\vol 64
\issue 1
\pages 103--110
\crossref{https://doi.org/10.1134/S0037446623010123}
Linking options:
  • https://www.mathnet.ru/eng/smj7751
  • https://www.mathnet.ru/eng/smj/v64/i1/p123
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ñèáèðñêèé ìàòåìàòè÷åñêèé æóðíàë Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024