Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2023, Volume 64, Number 1, Pages 98–112
DOI: https://doi.org/10.33048/smzh.2023.64.110
(Mi smj7749)
 

On universal positive graphs

B. S. Kalmurzaevab, N. A. Bazhenovc, D. B. Alisha

a Al-Farabi Kazakh National University
b Kazakh-British Technical University
c Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
References:
Abstract: We study the existence of the universal computable numberings and the universal graphs for various classes of positive graphs. It is known that each $\forall$-axiomatizable class of graphs $K$ can be characterized as follows: A graph $G$ belongs to $K$ if and only if for a given family of finite graphs $\mathbf{F}$ no graph in $\mathbf{F}$ is isomorphically embeddable into $G$. If all graphs in $\mathbf{F}$ are weakly connected; then, under additional effectiveness conditions, the corresponding class $K$ has some universal computable numbering and universal positive graph. The effectiveness conditions hold for forests, bipartite graphs, planar graphs, and $n$-colorable graphs (for a fixed number $n$). If $\mathbf{F}$ is a finite family of the graphs with weakly connected complement then the corresponding class $K$ contains a universal positive graph (in general, a universal computable numbering for $K$ may fail to exist).
Keywords: computable reducibility, computable numbering, computably enumerable relation, positive graph.
Funding agency Grant number
Ministry of Education and Science of the Republic of Kazakhstan AP08856493
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0011
The research was supported by the Science Committee of the Republic of Kazakhstan (Grant no. AP08856493 “Positive Graphs and Computable Reducibility on Them as Mathematical Models of Databases”). The work of Bazhenov was carried out in the framework of the State Task to the Sobolev Institute of Mathematics (Project FWNF–2022–0011).
Received: 06.04.2022
Revised: 07.07.2022
Accepted: 15.08.2022
English version:
Siberian Mathematical Journal, 2023, Volume 64, Issue 1, Pages 83–93
DOI: https://doi.org/10.1134/S003744662301010X
Bibliographic databases:
Document Type: Article
UDC: 510.53
Language: Russian
Citation: B. S. Kalmurzaev, N. A. Bazhenov, D. B. Alish, “On universal positive graphs”, Sibirsk. Mat. Zh., 64:1 (2023), 98–112; Siberian Math. J., 64:1 (2023), 83–93
Citation in format AMSBIB
\Bibitem{KalBazAli23}
\by B.~S.~Kalmurzaev, N.~A.~Bazhenov, D.~B.~Alish
\paper On~universal positive graphs
\jour Sibirsk. Mat. Zh.
\yr 2023
\vol 64
\issue 1
\pages 98--112
\mathnet{http://mi.mathnet.ru/smj7749}
\crossref{https://doi.org/10.33048/smzh.2023.64.110}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4567649}
\transl
\jour Siberian Math. J.
\yr 2023
\vol 64
\issue 1
\pages 83--93
\crossref{https://doi.org/10.1134/S003744662301010X}
Linking options:
  • https://www.mathnet.ru/eng/smj7749
  • https://www.mathnet.ru/eng/smj/v64/i1/p98
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ñèáèðñêèé ìàòåìàòè÷åñêèé æóðíàë Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:74
    Full-text PDF :15
    References:25
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024