Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2023, Volume 64, Number 1, Pages 56–64
DOI: https://doi.org/10.33048/smzh.2023.64.105
(Mi smj7744)
 

This article is cited in 2 scientific papers (total in 2 papers)

Approximation of functions on rays in $\Bbb{R}^n$ by solutions to convolution equations

V. V. Volchkov, Vit. V. Volchkov

Donetsk National University
Full-text PDF (310 kB) Citations (2)
References:
Abstract: This is a first study of approximation of continuous functions on rays in $\Bbb{R}^n$ by smooth solutions to a multidimensional convolution equation with a radial convolutor. We obtain an analog of the well-known Carleman's Theorem on tangent approximation by entire functions. As consequences, we give some new results of interest for the theory of convolution equations. These results concern the density in $\Bbb{C}$ of the range of some solutions to the convolution equation as well as the possible growth of solutions on rays in $\Bbb{R}^n$.
Keywords: convolution equation, mean periodicity, Carleman's theorem.
Received: 06.02.2022
Revised: 07.06.2022
Accepted: 15.08.2022
English version:
Siberian Mathematical Journal, 2023, Volume 64, Issue 1, Pages 48–55
DOI: https://doi.org/10.1134/S0037446623010056
Document Type: Article
UDC: 517.551
Language: Russian
Citation: V. V. Volchkov, Vit. V. Volchkov, “Approximation of functions on rays in $\Bbb{R}^n$ by solutions to convolution equations”, Sibirsk. Mat. Zh., 64:1 (2023), 56–64; Siberian Math. J., 64:1 (2023), 48–55
Citation in format AMSBIB
\Bibitem{VolVol23}
\by V.~V.~Volchkov, Vit.~V.~Volchkov
\paper Approximation of~functions on~rays in~$\Bbb{R}^n$ by~solutions to convolution equations
\jour Sibirsk. Mat. Zh.
\yr 2023
\vol 64
\issue 1
\pages 56--64
\mathnet{http://mi.mathnet.ru/smj7744}
\crossref{https://doi.org/10.33048/smzh.2023.64.105}
\transl
\jour Siberian Math. J.
\yr 2023
\vol 64
\issue 1
\pages 48--55
\crossref{https://doi.org/10.1134/S0037446623010056}
Linking options:
  • https://www.mathnet.ru/eng/smj7744
  • https://www.mathnet.ru/eng/smj/v64/i1/p56
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:79
    Full-text PDF :15
    References:23
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024