Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2023, Volume 64, Number 1, Pages 17–27
DOI: https://doi.org/10.33048/smzh.2023.64.102
(Mi smj7741)
 

This article is cited in 2 scientific papers (total in 2 papers)

The topologies of local convergence in measure on the algebras of measurable operators

A. M. Bikchentaev

Institute of Mathematics and Mechanics, Kazan (Volga Region) Federal University
Full-text PDF (362 kB) Citations (2)
References:
Abstract: Given a von Neumann algebra ${\mathcal M}$ of operators on a Hilbert space ${\mathcal H}$ and a faithful normal semifinite trace $\tau$ on ${\mathcal M}$, denote by $S({\mathcal M}, \tau )$ the $*$-algebra of $\tau$-measurable operators. We obtain a sufficient condition for the positivity of an hermitian operator in $S({\mathcal M}, \tau )$ in terms of the topology $t_{\tau l}$ of $\tau$-local convergence in measure. We prove that the $*$-ideal ${\mathcal F}({\mathcal M}, \tau )$ of elementary operators is \hbox{$t_{ \tau l}$-dense} in $S({\mathcal M}, \tau )$. If $t_{ \tau}$ is locally convex then so is $t_{ \tau l}$; if $t_{ \tau l}$ is locally convex then so is the topology $t_{w \tau l}$ of weakly $\tau$-local convergence in measure. We propose some method for constructing $F$-normed ideal spaces, henceforth $F$-NIPs, on $({\mathcal M}, \tau )$ starting from a prescribed $F$-NIP and preserving completeness, local convexity, local boundedness, or normability whenever present in the original. Given two \hbox{$F$-NIPs ${\mathcal X}$} and ${\mathcal Y}$ on $({\mathcal M}, \tau )$, suppose that $A{\mathcal X}\subseteq {\mathcal Y}$ for some operator $A \in S({\mathcal M}, \tau )$. Then the multiplier ${\mathbf M}_A X=AX$ acting as ${\mathbf M}_A : {\mathcal X}\to {\mathcal Y}$ is continuous. In particular, for ${\mathcal X}\subseteq {\mathcal Y}$ the natural embedding of ${\mathcal X}$ into ${\mathcal Y}$ is continuous. We inspect the properties of decreasing sequences of $F$-NIPs on $({\mathcal M},\tau )$.
Keywords: Hilbert space, linear operator, von Neumann algebra, normal trace, measurable operator, local convergence in measure, locally convex space.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2022-882
The research was carried out in the framework of the Development Program of the Scientific Educational Mathematical Center of the Volga Federal District (Agreement 075–02–2022–882).
Received: 29.03.2022
Revised: 28.10.2022
Accepted: 07.11.2022
English version:
Siberian Mathematical Journal, 2023, Volume 64, Issue 1, Pages 13–21
DOI: https://doi.org/10.1134/S0037446623010020
Bibliographic databases:
Document Type: Article
UDC: 517.983:517.986
MSC: 35R30
Language: Russian
Citation: A. M. Bikchentaev, “The topologies of local convergence in measure on the algebras of measurable operators”, Sibirsk. Mat. Zh., 64:1 (2023), 17–27; Siberian Math. J., 64:1 (2023), 13–21
Citation in format AMSBIB
\Bibitem{Bik23}
\by A.~M.~Bikchentaev
\paper The topologies of local convergence in measure on the algebras of measurable operators
\jour Sibirsk. Mat. Zh.
\yr 2023
\vol 64
\issue 1
\pages 17--27
\mathnet{http://mi.mathnet.ru/smj7741}
\crossref{https://doi.org/10.33048/smzh.2023.64.102}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4567641}
\transl
\jour Siberian Math. J.
\yr 2023
\vol 64
\issue 1
\pages 13--21
\crossref{https://doi.org/10.1134/S0037446623010020}
Linking options:
  • https://www.mathnet.ru/eng/smj7741
  • https://www.mathnet.ru/eng/smj/v64/i1/p17
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ñèáèðñêèé ìàòåìàòè÷åñêèé æóðíàë Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:229
    Full-text PDF :57
    References:111
    First page:95
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024