Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2022, Volume 63, Number 6, Pages 1266–1275
DOI: https://doi.org/10.33048/smzh.2022.63.608
(Mi smj7730)
 

The uniqueness criterion for a solution to a boundary value problem for the operator $\frac{\partial ^{2p} }{\partial t^{2p}}-A$ with an elliptic operator $A$ of arbitrary order

B. E. Kanguzhinab, B. D. Koshanovca

a Al-Farabi Kazakh National University
b Institute of Mathematics and Mathematical Modeling, Ministry of Education and Science, Republic of Kazakhstan, Almaty
c International Information Technology University
References:
Abstract: We establish the uniqueness criterion for a solution to the operator $\frac{\partial ^{2p}}{\partial t^{2p}}-A(x,D)$ with the Dirichlet time-dependent boundary conditions and general boundary conditions in the space variables. The order of the differentiation operator $\frac{\partial ^{2p} }{\partial t^{2p}}$ is assumed even. Note that $A(x,D)$ in the space variables is an arbitrary elliptic operator with some rather general boundary operators $B_j$ obeying the conventional Agmon conditions. The Agmon conditions ensure the existence of a complete orthonormal system of eigenfunctions (in $L_2(\Omega)$) provided that $\Omega$ is a bounded domain with sufficiently smooth boundary.
Keywords: higher order elliptic operator, boundary value problem, eigenfunction, uniqueness of a solution, entire function of exponential type.
Funding agency Grant number
Ministry of Education and Science of the Republic of Kazakhstan AP 08855402
AP 08857604
The authors were supported by the Ministry of Education and Science of the Republic of Kazakhstan (Grants AP08855402, IMMM, and AP08857604, IITU).
Received: 12.01.2022
Revised: 25.04.2022
Accepted: 15.06.2022
English version:
Siberian Mathematical Journal, 2022, Volume 63, Issue 6, Pages 1083–1090
DOI: https://doi.org/10.1134/S0037446622060088
Bibliographic databases:
Document Type: Article
UDC: 517.956
MSC: 35R30
Language: Russian
Citation: B. E. Kanguzhin, B. D. Koshanov, “The uniqueness criterion for a solution to a boundary value problem for the operator $\frac{\partial ^{2p} }{\partial t^{2p}}-A$ with an elliptic operator $A$ of arbitrary order”, Sibirsk. Mat. Zh., 63:6 (2022), 1266–1275; Siberian Math. J., 63:6 (2022), 1083–1090
Citation in format AMSBIB
\Bibitem{KanKos22}
\by B.~E.~Kanguzhin, B.~D.~Koshanov
\paper The uniqueness criterion for a~solution to a~boundary value problem for the operator $\frac{\partial ^{2p} }{\partial t^{2p}}-A$ with an elliptic operator~$A$ of arbitrary order
\jour Sibirsk. Mat. Zh.
\yr 2022
\vol 63
\issue 6
\pages 1266--1275
\mathnet{http://mi.mathnet.ru/smj7730}
\crossref{https://doi.org/10.33048/smzh.2022.63.608}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=780369}
\transl
\jour Siberian Math. J.
\yr 2022
\vol 63
\issue 6
\pages 1083--1090
\crossref{https://doi.org/10.1134/S0037446622060088}
Linking options:
  • https://www.mathnet.ru/eng/smj7730
  • https://www.mathnet.ru/eng/smj/v63/i6/p1266
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024