Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2022, Volume 63, Number 6, Pages 1256–1265
DOI: https://doi.org/10.33048/smzh.2022.63.607
(Mi smj7729)
 

This article is cited in 3 scientific papers (total in 3 papers)

On groups with involutions saturated by finite Frobenius groups

B. E. Durakov, A. I. Sozutov

Institute of Mathematics and Computer Science, Siberian Federal University, Krasnoyarsk
Full-text PDF (325 kB) Citations (3)
References:
Abstract: We study the mixed and periodic groups with involutions and finite elements which are saturated by finite Frobenius groups. We prove that a group $G$ of $2$-rank $1$ of even order greater than $2$ splits into the direct product of a periodic abelian group $F$ and the centralizer of an involution; moreover, each maximal periodic subgroup in $G$ is a Frobenius group with kernel $F$. We characterize one class with the saturation condition. We prove that a group of $2$-rank greater than $1$ with finite elements of prime orders is a split extension of a periodic group $F$ by a group $H$ in which all elements of prime orders generate a locally cyclic group; moreover, every element in $F$ with every element of prime order in $H$ generates a finite Frobenius group. Under the condition of the triviality of the local finite radical, we determine some properties of the subgroup $F$.
Keywords: Frobenius group, involution, $2$-rank, finite element, weakly conjugate biprimitive finite group, saturation.
Funding agency Grant number
Russian Science Foundation 19-71-10017
The authors were supported by the Russian Science Foundation (Grant no. 19–71–10017).
Received: 17.03.2022
Revised: 21.04.2022
Accepted: 15.06.2022
English version:
Siberian Mathematical Journal, 2022, Volume 63, Issue 6, Pages 1075–1082
DOI: https://doi.org/10.1134/S0037446622060076
Document Type: Article
UDC: 512.54
MSC: 35R30
Language: Russian
Citation: B. E. Durakov, A. I. Sozutov, “On groups with involutions saturated by finite Frobenius groups”, Sibirsk. Mat. Zh., 63:6 (2022), 1256–1265; Siberian Math. J., 63:6 (2022), 1075–1082
Citation in format AMSBIB
\Bibitem{DurSoz22}
\by B.~E.~Durakov, A.~I.~Sozutov
\paper On~groups with involutions saturated by finite Frobenius groups
\jour Sibirsk. Mat. Zh.
\yr 2022
\vol 63
\issue 6
\pages 1256--1265
\mathnet{http://mi.mathnet.ru/smj7729}
\crossref{https://doi.org/10.33048/smzh.2022.63.607}
\transl
\jour Siberian Math. J.
\yr 2022
\vol 63
\issue 6
\pages 1075--1082
\crossref{https://doi.org/10.1134/S0037446622060076}
Linking options:
  • https://www.mathnet.ru/eng/smj7729
  • https://www.mathnet.ru/eng/smj/v63/i6/p1256
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ñèáèðñêèé ìàòåìàòè÷åñêèé æóðíàë Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024