Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2022, Volume 63, Number 6, Pages 1224–1236
DOI: https://doi.org/10.33048/smzh.2022.63.604
(Mi smj7726)
 

This article is cited in 1 scientific paper (total in 1 paper)

Approximation and Carleman formulas for solutions to parabolic Lamé-type operators in cylindrical domains

P. Yu. Vilkov, I. A. Kurilenko, A. A. Shlapunov

Siberian Federal University, Krasnoyarsk
Full-text PDF (372 kB) Citations (1)
References:
Abstract: Assume that $s \in {\Bbb N}$ and $T_1,T_2 \in {\Bbb R}$, with $T_1<T_2$. Assume further that $\Omega$ and $\omega $ are bounded domains in ${\Bbb R}^n$, with $n \geq 1$, such that $\omega \subset \Omega$ and the complement $\Omega \setminus \omega$ has no nonempty compact components in $\Omega$. We study the approximation of solutions in the Lebesgue space $L^2(\omega \times (T_1,T_2))$ to parabolic Lamé-type operators in the cylindrical domain $\omega \times (T_1,T_2) \subset {\Bbb R}^{n+1}$ by more regular solutions in the larger domain $\Omega \times (T_1,T_2)$. As application of the approximation theorems, we construct some Carleman formulas for recovering solutions to these parabolic operators in the Sobolev space $H^{2s,s}(\Omega \times (T_1,T_2))$ via the values of the solutions and the corresponding stress tensors on a part of the lateral surface of the cylinder.
Keywords: parabolic Lamé-type operator, approximation theorem, Carleman formula.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075–02–2022–876
Foundation for the Development of Theoretical Physics and Mathematics BASIS
The first author was supported by the Krasnoyarsk Mathematical Center financed by the Ministry of Science and Higher Education of the Russian Federation (Grant no.В 075–02–2022–876). The second and third authors were supported by the Foundation for the Advancement of Theoretical Physics “Basis.”
Received: 17.02.2022
Revised: 22.05.2022
Accepted: 15.06.2022
English version:
Siberian Mathematical Journal, 2022, Volume 63, Issue 6, Pages 1049–1059
DOI: https://doi.org/10.1134/S0037446622060040
Document Type: Article
UDC: 517.9
MSC: 35R30
Language: Russian
Citation: P. Yu. Vilkov, I. A. Kurilenko, A. A. Shlapunov, “Approximation and Carleman formulas for solutions to parabolic Lamé-type operators in cylindrical domains”, Sibirsk. Mat. Zh., 63:6 (2022), 1224–1236; Siberian Math. J., 63:6 (2022), 1049–1059
Citation in format AMSBIB
\Bibitem{VilKurShl22}
\by P.~Yu.~Vilkov, I.~A.~Kurilenko, A.~A.~Shlapunov
\paper Approximation and Carleman formulas for solutions to parabolic Lam\'{e}-type operators in cylindrical domains
\jour Sibirsk. Mat. Zh.
\yr 2022
\vol 63
\issue 6
\pages 1224--1236
\mathnet{http://mi.mathnet.ru/smj7726}
\crossref{https://doi.org/10.33048/smzh.2022.63.604}
\transl
\jour Siberian Math. J.
\yr 2022
\vol 63
\issue 6
\pages 1049--1059
\crossref{https://doi.org/10.1134/S0037446622060040}
Linking options:
  • https://www.mathnet.ru/eng/smj7726
  • https://www.mathnet.ru/eng/smj/v63/i6/p1224
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024