Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2022, Volume 63, Number 5, Pages 1074–1080
DOI: https://doi.org/10.33048/smzh.2022.63.509
(Mi smj7714)
 

This article is cited in 3 scientific papers (total in 3 papers)

On the range of the quantization dimension of probability measures on a metric compactum

A. V. Ivanov

Institute of Applied Mathematical Research of the Karelian Research Centre RAS, Petrozavodsk
Full-text PDF (286 kB) Citations (3)
References:
Abstract: The quantization dimension of a probability measure on a metric compactum $X$ does not exceed the box dimension of the support of the measure. We prove the following intermediate value theorem for the upper quantization dimension: If $X$ is a metric compact space whose upper box dimension is equal to $a\leq\infty$ then for every real $b$ such that $0\leq b\leq a $ there exists a probability measure on $X$ whose support is $X$ and whose upper quantization dimension is $b$.
Keywords: probability measure, box dimension, quantization dimension, intermediate value theorem.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation
The study was carried out under the State Task to the Institute of Applied Mathematical Research of the Karelian Scientific Center of the Russian Academy of Sciences.
Received: 17.01.2022
Revised: 28.02.2022
Accepted: 15.04.2022
English version:
Siberian Mathematical Journal, 2022, Volume 63, Issue 5, Pages 903–908
DOI: https://doi.org/10.1134/S0037446622050093
Document Type: Article
UDC: 515.12, 519.21
Language: Russian
Citation: A. V. Ivanov, “On the range of the quantization dimension of probability measures on a metric compactum”, Sibirsk. Mat. Zh., 63:5 (2022), 1074–1080; Siberian Math. J., 63:5 (2022), 903–908
Citation in format AMSBIB
\Bibitem{Iva22}
\by A.~V.~Ivanov
\paper On the range of the quantization dimension of probability measures on~a~metric compactum
\jour Sibirsk. Mat. Zh.
\yr 2022
\vol 63
\issue 5
\pages 1074--1080
\mathnet{http://mi.mathnet.ru/smj7714}
\crossref{https://doi.org/10.33048/smzh.2022.63.509}
\transl
\jour Siberian Math. J.
\yr 2022
\vol 63
\issue 5
\pages 903--908
\crossref{https://doi.org/10.1134/S0037446622050093}
Linking options:
  • https://www.mathnet.ru/eng/smj7714
  • https://www.mathnet.ru/eng/smj/v63/i5/p1074
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:116
    Full-text PDF :38
    References:32
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024