Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2022, Volume 63, Number 5, Pages 1027–1034
DOI: https://doi.org/10.33048/smzh.2022.63.505
(Mi smj7710)
 

Direct methods in variational field theory

R. Gratwicka, M. A. Sychevb

a University of Edinburgh
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
References:
Abstract: We show that the Weierstrass–Hilbert classical field theory can be strengthened. Namely, for each extremal field, it is true that if an extremal is an element of the field then a minimum is attained in the class of Sobolev functions with the same boundary data as for the extremal and with graphs in the set covered by the field. This result remains valid if one of the extremals is singular. If there is a field containing more than one singular extremal then each of these extremals defines the minimization problem having no solution in the class of Lipschitz functions with graphs in the set covered by the field.
Keywords: integral functional, ellipticity, Euler equation, minimizer, field theory, direct method, singular extremal.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0008
Russian Foundation for Basic Research 18-01-00649
The study was carried out in the framework of the State Task (Project FWNF–2022–0008) and supported by the RFBR (Project 18–01–00649).
Received: 05.08.2019
Revised: 04.05.2022
Accepted: 15.06.2022
English version:
Siberian Mathematical Journal, 2022, Volume 63, Issue 5, Pages 862–867
DOI: https://doi.org/10.1134/S0037446622050056
Document Type: Article
UDC: 517.972
MSC: 35R30
Language: Russian
Citation: R. Gratwick, M. A. Sychev, “Direct methods in variational field theory”, Sibirsk. Mat. Zh., 63:5 (2022), 1027–1034; Siberian Math. J., 63:5 (2022), 862–867
Citation in format AMSBIB
\Bibitem{GraSyc22}
\by R.~Gratwick, M.~A.~Sychev
\paper Direct methods in~variational field theory
\jour Sibirsk. Mat. Zh.
\yr 2022
\vol 63
\issue 5
\pages 1027--1034
\mathnet{http://mi.mathnet.ru/smj7710}
\crossref{https://doi.org/10.33048/smzh.2022.63.505}
\transl
\jour Siberian Math. J.
\yr 2022
\vol 63
\issue 5
\pages 862--867
\crossref{https://doi.org/10.1134/S0037446622050056}
Linking options:
  • https://www.mathnet.ru/eng/smj7710
  • https://www.mathnet.ru/eng/smj/v63/i5/p1027
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ñèáèðñêèé ìàòåìàòè÷åñêèé æóðíàë Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:88
    Full-text PDF :22
    References:28
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024