Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2022, Volume 63, Number 5, Pages 975–993
DOI: https://doi.org/10.33048/smzh.2022.63.502
(Mi smj7707)
 

Bounded turning in Möbius structures

V. V. Aseev

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
References:
Abstract: We study a Möbius-invariant generalization, called BTR, of the classical property of bounded turning in a metric space which was introduced by Tukia and Väisälä in 1980 and suitable for use in Ptolemaic Möbius structures in the sense of Buyalo. In particular, we prove that every continuum with the BTR property, lying on the boundary of a domain in the complex plane, is locally connected.
Keywords: Möbius structure, Ptolemaic Möbius space, continuum with bounded turning, quasimöbius arc, quasimöbiusly connected space, local connectedness.
Funding agency Grant number
Siberian Branch of Russian Academy of Sciences 1.1.2, проект № 0314-2019-0007
The work was carried out in the framework of the State Task to the Sobolev Institute of Mathematics (Project 0314–2019–0007).
Received: 23.11.2021
Revised: 25.05.2022
Accepted: 15.06.2022
English version:
Siberian Mathematical Journal, 2022, Volume 63, Issue 5, Pages 819–833
DOI: https://doi.org/10.1134/S0037446622050020
Document Type: Article
UDC: 517.54
MSC: 35R30
Language: Russian
Citation: V. V. Aseev, “Bounded turning in Möbius structures”, Sibirsk. Mat. Zh., 63:5 (2022), 975–993; Siberian Math. J., 63:5 (2022), 819–833
Citation in format AMSBIB
\Bibitem{Ase22}
\by V.~V.~Aseev
\paper Bounded turning in M\"obius structures
\jour Sibirsk. Mat. Zh.
\yr 2022
\vol 63
\issue 5
\pages 975--993
\mathnet{http://mi.mathnet.ru/smj7707}
\crossref{https://doi.org/10.33048/smzh.2022.63.502}
\transl
\jour Siberian Math. J.
\yr 2022
\vol 63
\issue 5
\pages 819--833
\crossref{https://doi.org/10.1134/S0037446622050020}
Linking options:
  • https://www.mathnet.ru/eng/smj7707
  • https://www.mathnet.ru/eng/smj/v63/i5/p975
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:186
    Full-text PDF :23
    References:34
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024