Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2022, Volume 63, Number 4, Pages 935–948
DOI: https://doi.org/10.33048/smzh.2022.63.418
(Mi smj7705)
 

De Rham's theorem for Orlicz cohomology

E. Sequeira

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
References:
Abstract: We prove that the de Rham $L^\phi$-cohomology of a Riemannian manifold $M$ admitting a convenient triangulation $X$ is isomorphic to the simplicial $\ell^\phi$-cohomology of $X$ under some assumptions on the Young function $\phi$. This result implies the quasi-isometry invariance of the first cohomology.
Keywords: Orlicz space, Orlicz cohomology, quasi-isometry invariant.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2019-1675
The work is supported by the Mathematical Center in Akademgorodok under Agreement 075–15–2019–1675 with the Ministry of Science and Higher Education of the Russian Federation.
Received: 30.09.2021
Revised: 09.01.2022
Accepted: 10.02.2022
English version:
Siberian Mathematical Journal, 2022, Volume 63, Issue 4, Pages 777–788
DOI: https://doi.org/10.1134/S0037446622040188
Document Type: Article
UDC: 515.142
MSC: 35R30
Language: Russian
Citation: E. Sequeira, “De Rham's theorem for Orlicz cohomology”, Sibirsk. Mat. Zh., 63:4 (2022), 935–948; Siberian Math. J., 63:4 (2022), 777–788
Citation in format AMSBIB
\Bibitem{Seq22}
\by E.~Sequeira
\paper De Rham's theorem for Orlicz cohomology
\jour Sibirsk. Mat. Zh.
\yr 2022
\vol 63
\issue 4
\pages 935--948
\mathnet{http://mi.mathnet.ru/smj7705}
\crossref{https://doi.org/10.33048/smzh.2022.63.418}
\transl
\jour Siberian Math. J.
\yr 2022
\vol 63
\issue 4
\pages 777--788
\crossref{https://doi.org/10.1134/S0037446622040188}
Linking options:
  • https://www.mathnet.ru/eng/smj7705
  • https://www.mathnet.ru/eng/smj/v63/i4/p935
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ñèáèðñêèé ìàòåìàòè÷åñêèé æóðíàë Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:66
    Full-text PDF :23
    References:23
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024