Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2022, Volume 63, Number 4, Pages 911–923
DOI: https://doi.org/10.33048/smzh.2022.63.416
(Mi smj7703)
 

This article is cited in 4 scientific papers (total in 4 papers)

Functional-differential equations with dilation and symmetry

L. E. Rossovskiia, A. A. Tovsultanovb

a Peoples' Friendship University of Russia, Moscow
b Chechen State University, Grozny
Full-text PDF (349 kB) Citations (4)
References:
Abstract: We examine the Dirichlet problem in a bounded plane domain for a strongly elliptic functional-differential equation of the second order containing the argument transformations $x\mapsto px$ ($p>0$) and $x\mapsto-x$ in higher-order derivatives. The study of solvability of the problem relies on a Gårding-type inequality for which some necessary and sufficient conditions are obtained in algebraic form.
Keywords: elliptic functional-differential equation, boundary value problem, Gårding-type inequality.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-03-2020-223/3 (FSSF-2020-0018)
The authors were supported by the Ministry for Education and Science of the Russian Federation within the framework of the State Task (Grant no. 075–03–2020–223/3) (FSSF–2020–0018).
Received: 26.09.2021
Revised: 09.04.2022
Accepted: 15.04.2022
English version:
Siberian Mathematical Journal, 2022, Volume 63, Issue 4, Pages 758–768
DOI: https://doi.org/10.1134/S0037446622040164
Bibliographic databases:
Document Type: Article
UDC: 517.95+517.929
MSC: 35R30
Language: Russian
Citation: L. E. Rossovskii, A. A. Tovsultanov, “Functional-differential equations with dilation and symmetry”, Sibirsk. Mat. Zh., 63:4 (2022), 911–923; Siberian Math. J., 63:4 (2022), 758–768
Citation in format AMSBIB
\Bibitem{RosTov22}
\by L.~E.~Rossovskii, A.~A.~Tovsultanov
\paper Functional-differential equations with dilation and symmetry
\jour Sibirsk. Mat. Zh.
\yr 2022
\vol 63
\issue 4
\pages 911--923
\mathnet{http://mi.mathnet.ru/smj7703}
\crossref{https://doi.org/10.33048/smzh.2022.63.416}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4460475}
\transl
\jour Siberian Math. J.
\yr 2022
\vol 63
\issue 4
\pages 758--768
\crossref{https://doi.org/10.1134/S0037446622040164}
Linking options:
  • https://www.mathnet.ru/eng/smj7703
  • https://www.mathnet.ru/eng/smj/v63/i4/p911
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ñèáèðñêèé ìàòåìàòè÷åñêèé æóðíàë Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024