Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2022, Volume 63, Number 4, Pages 893–910
DOI: https://doi.org/10.33048/smzh.2022.63.415
(Mi smj7702)
 

This article is cited in 1 scientific paper (total in 1 paper)

Right alternative unital bimodules over the matrix algebras of order $\geq 3$

L. I. Murakamia, S. V. Pchelintsevb, O. V. Shashkovb

a Universidade de São Paulo, Instituto de Matemática e Estatística
b Financial University under the Government of the Russian Federation, Moscow
Full-text PDF (380 kB) Citations (1)
References:
Abstract: We address the unital right alternative bimodules over the matrix algebras $\mathrm{M}_n(\Phi)$ of order $n\ge3$, prove that each of these bimodules is the direct sum of an associative bimodule and a Graves bimodule, and fully describe the structure of twisted Graves bimodules. Also, we construct an irreducible right alternative $\mathrm{M}_n(\Phi)$-bimodule of minimal dimension $n(n-1)$. Furthermore, we show that no element $f(x,y)$ of the free right alternative algebra of rank 3 is its nuclear element. The results of this article are needed for the study of the right alternative superalgebras whose even part includes $\mathrm{M}_n(\Phi)$ with $n\ge3$.
Keywords: right alternative algebra, Jordan algebra, right alternative bimodule, Jordan bimodule.
Funding agency Grant number
Fundação de Amparo à Pesquisa do Estado de São Paulo 2018/23690-6
The first author is supported by the FAPESP 2018/23690–6.
Received: 01.11.2021
Revised: 20.05.2022
Accepted: 15.06.2022
English version:
Siberian Mathematical Journal, 2022, Volume 63, Issue 4, Pages 743–757
DOI: https://doi.org/10.1134/S0037446622040152
Document Type: Article
UDC: 512.554.5
MSC: 35R30
Language: Russian
Citation: L. I. Murakami, S. V. Pchelintsev, O. V. Shashkov, “Right alternative unital bimodules over the matrix algebras of order $\geq 3$”, Sibirsk. Mat. Zh., 63:4 (2022), 893–910; Siberian Math. J., 63:4 (2022), 743–757
Citation in format AMSBIB
\Bibitem{MurPchSha22}
\by L.~I.~Murakami, S.~V.~Pchelintsev, O.~V.~Shashkov
\paper Right alternative unital bimodules over the matrix algebras of order~$\geq 3$
\jour Sibirsk. Mat. Zh.
\yr 2022
\vol 63
\issue 4
\pages 893--910
\mathnet{http://mi.mathnet.ru/smj7702}
\crossref{https://doi.org/10.33048/smzh.2022.63.415}
\transl
\jour Siberian Math. J.
\yr 2022
\vol 63
\issue 4
\pages 743--757
\crossref{https://doi.org/10.1134/S0037446622040152}
Linking options:
  • https://www.mathnet.ru/eng/smj7702
  • https://www.mathnet.ru/eng/smj/v63/i4/p893
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:71
    Full-text PDF :21
    References:22
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024