|
This article is cited in 8 scientific papers (total in 8 papers)
Nonlinear mixed Jordan triple $*$-derivations on $*$-algebras
Ch. Li, D. Zhang School of Mathematics and Statistics, Shandong Normal University, Jinan 250014, P. R. China
Abstract:
Let $\mathcal{A}$ be a unital $\ast$-algebra containing a nontrivial projection. Under some mild conditions on $\mathcal{A}$, it is shown that a map $\Phi: \mathcal{A}\rightarrow \mathcal{A}$ is a nonlinear mixed Jordan triple $*$-derivation if and only if $\Phi$ is an additive $*$-derivation. In particular, we apply the above result to prime $\ast$-algebras, von Neumann algebras with no central summands of type $I_1$, factor von Neumann algebras, and standard operator algebras.
Keywords:
mixed Jordan triple $*$-derivation, $*$-derivation, von Neumann algebra.
Received: 30.04.2021 Revised: 02.02.2022 Accepted: 10.02.2022
Citation:
Ch. Li, D. Zhang, “Nonlinear mixed Jordan triple $*$-derivations on $*$-algebras”, Sibirsk. Mat. Zh., 63:4 (2022), 884–892; Siberian Math. J., 63:4 (2022), 735–742
Linking options:
https://www.mathnet.ru/eng/smj7701 https://www.mathnet.ru/eng/smj/v63/i4/p884
|
Statistics & downloads: |
Abstract page: | 58 | Full-text PDF : | 12 | References: | 29 | First page: | 3 |
|