Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2022, Volume 63, Number 4, Pages 717–735
DOI: https://doi.org/10.33048/smzh.2022.63.401
(Mi smj7688)
 

This article is cited in 2 scientific papers (total in 2 papers)

Formulas for calculating the $3j$-symbols of the representations of the Lie algebra $\mathfrak{gl}_3$ for the Gelfand–Tsetlin bases

D. V. Artamonov

Lomonosov Moscow State University, Faculty of Economics
Full-text PDF (418 kB) Citations (2)
References:
Abstract: We give a simple explicit formula for an arbitrary $3j$-symbol for the Lie algebra $\mathfrak{gl}_3$. The symbol is expressed as the ratio of values of hypergeometric functions with $\pm 1$ substituted for all arguments. Finding a $3j$-symbol is essentially equivalent to the determination of an arbitrary Clebsch–Gordan coefficient for $\mathfrak{gl}_3$. The coefficients are important in the quark theory of quantum mechanics.
Keywords: Clebsch–Gordan coefficient, $3j$-symbol, hypergeometric function.
Received: 19.04.2021
Revised: 09.04.2022
Accepted: 15.04.2022
English version:
Siberian Mathematical Journal, 2022, Volume 63, Issue 4, Pages 595–610
DOI: https://doi.org/10.1134/S0037446622040012
Bibliographic databases:
Document Type: Article
UDC: 512.815.1
MSC: 35R30
Language: Russian
Citation: D. V. Artamonov, “Formulas for calculating the $3j$-symbols of the representations of the Lie algebra $\mathfrak{gl}_3$ for the Gelfand–Tsetlin bases”, Sibirsk. Mat. Zh., 63:4 (2022), 717–735; Siberian Math. J., 63:4 (2022), 595–610
Citation in format AMSBIB
\Bibitem{Art22}
\by D.~V.~Artamonov
\paper Formulas for calculating the $3j$-symbols of the representations of the Lie algebra~$\mathfrak{gl}_3$ for the Gelfand--Tsetlin bases
\jour Sibirsk. Mat. Zh.
\yr 2022
\vol 63
\issue 4
\pages 717--735
\mathnet{http://mi.mathnet.ru/smj7688}
\crossref{https://doi.org/10.33048/smzh.2022.63.401}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4537108}
\transl
\jour Siberian Math. J.
\yr 2022
\vol 63
\issue 4
\pages 595--610
\crossref{https://doi.org/10.1134/S0037446622040012}
Linking options:
  • https://www.mathnet.ru/eng/smj7688
  • https://www.mathnet.ru/eng/smj/v63/i4/p717
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024