Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2022, Volume 63, Number 3, Pages 510–515
DOI: https://doi.org/10.33048/smzh.2022.63.303
(Mi smj7673)
 

This article is cited in 1 scientific paper (total in 1 paper)

An analytical criterion for the local finiteness of a countable semigroup

O. Yu. Aristov
Full-text PDF (281 kB) Citations (1)
References:
Abstract: We prove that a countable semigroup $S$ is locally finite if and only if the Arens–Michael envelope of the semigroup algebra of $S$ is a $(DF)$-space. This is a counterpart to the author's recent result asserting that $S$ is finitely generated if and only if the Arens–Michael envelope is a Fréchet space.
Keywords: locally finite semigroup, Arens–Michael envelope, nuclear $(DF)$-space.
Received: 02.08.2021
Revised: 02.08.2021
Accepted: 10.12.2021
English version:
Siberian Mathematical Journal, 2022, Volume 63, Issue 3, Pages 421–424
DOI: https://doi.org/10.1134/S003744662203003X
Document Type: Article
UDC: 517.986.2+517.986.66+517.982.24
MSC: 35R30
Language: Russian
Citation: O. Yu. Aristov, “An analytical criterion for the local finiteness of a countable semigroup”, Sibirsk. Mat. Zh., 63:3 (2022), 510–515; Siberian Math. J., 63:3 (2022), 421–424
Citation in format AMSBIB
\Bibitem{Ari22}
\by O.~Yu.~Aristov
\paper An analytical criterion for the local finiteness of a~countable semigroup
\jour Sibirsk. Mat. Zh.
\yr 2022
\vol 63
\issue 3
\pages 510--515
\mathnet{http://mi.mathnet.ru/smj7673}
\crossref{https://doi.org/10.33048/smzh.2022.63.303}
\transl
\jour Siberian Math. J.
\yr 2022
\vol 63
\issue 3
\pages 421--424
\crossref{https://doi.org/10.1134/S003744662203003X}
Linking options:
  • https://www.mathnet.ru/eng/smj7673
  • https://www.mathnet.ru/eng/smj/v63/i3/p510
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:73
    Full-text PDF :16
    References:29
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024