Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2022, Volume 63, Number 2, Pages 464–472
DOI: https://doi.org/10.33048/smzh.2022.63.216
(Mi smj7670)
 

This article is cited in 6 scientific papers (total in 6 papers)

On the sharp Baer–Suzuki theorem for the $\pi$-radical: sporadic groups

N. Yanga, Zh. Wua, D. O. Revinbcd

a Jiangnan University
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
c Novosibirsk State University
d N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
Full-text PDF (318 kB) Citations (6)
References:
Abstract: Let $\pi$ be a proper subset of the set of all primes and ${|\pi|\geq 2}$. Denote the smallest prime not in $\pi$ by $r$ and let $m=r$ if $r=2,3$, and $m=r-1$ if $r\geq 5$. We study the following conjecture: A conjugacy class $D$ of a finite group $G$ lies in the $\pi$-radical $\mathrm{O}_\pi(G)$ of $G$ if and only if every $m$ elements of $D$ generate a $\pi$-subgroup. We confirm this conjecture for the groups $G$ whose every nonabelian composition factor is isomorphic to a sporadic or alternating group.
Keywords: sporadic simple group, $\pi$-radical of a finite group, Baer–Suzuki $\pi$-theorem.
Funding agency Grant number
Russian Science Foundation 19-11-00039
Natural Science Foundation of Jiangsu Province BK20210442
Jiangsu Shuangchuang, Mass Innovation and Entrepreneurship, Talent Program JSSCBS20210841
The work was supported by the Russian Science Foundation (Grant 19–11–00039). Zh. Wu was supported by the Natural Science Foundation of the Jiangsu Province, China (Grant no. BK20210442), and the Jiangsu Shuangchuang, Mass Innovation and Entrepreneurship, Talent Program (Grant no. JSSCBS20210841).
Received: 21.07.2021
Revised: 05.11.2021
Accepted: 10.12.2021
English version:
Siberian Mathematical Journal, 2022, Volume 63, Issue 2, Pages 387–394
DOI: https://doi.org/10.1134/S0037446622020161
Document Type: Article
UDC: 512.542
Language: Russian
Citation: N. Yang, Zh. Wu, D. O. Revin, “On the sharp Baer–Suzuki theorem for the $\pi$-radical: sporadic groups”, Sibirsk. Mat. Zh., 63:2 (2022), 464–472; Siberian Math. J., 63:2 (2022), 387–394
Citation in format AMSBIB
\Bibitem{YanWuRev22}
\by N.~Yang, Zh.~Wu, D.~O.~Revin
\paper On the sharp Baer--Suzuki theorem for the $\pi$-radical: sporadic groups
\jour Sibirsk. Mat. Zh.
\yr 2022
\vol 63
\issue 2
\pages 464--472
\mathnet{http://mi.mathnet.ru/smj7670}
\crossref{https://doi.org/10.33048/smzh.2022.63.216}
\transl
\jour Siberian Math. J.
\yr 2022
\vol 63
\issue 2
\pages 387--394
\crossref{https://doi.org/10.1134/S0037446622020161}
Linking options:
  • https://www.mathnet.ru/eng/smj7670
  • https://www.mathnet.ru/eng/smj/v63/i2/p464
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ñèáèðñêèé ìàòåìàòè÷åñêèé æóðíàë Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:201
    Full-text PDF :35
    References:49
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024