Abstract:
Let π be a proper subset of the set of all primes and |π|≥2. Denote the smallest prime not in π by r and let m=r if r=2,3, and m=r−1 if r≥5. We study the following conjecture: A conjugacy class D of a finite group G lies in the π-radical Oπ(G) of G if and only if every m elements of D generate a π-subgroup. We confirm this conjecture for the groups G whose every nonabelian composition factor is isomorphic to a sporadic or alternating group.
Keywords:
sporadic simple group, π-radical of a finite group, Baer–Suzuki π-theorem.
Jiangsu Shuangchuang, Mass Innovation and Entrepreneurship, Talent Program
JSSCBS20210841
The work was supported by the Russian Science Foundation (Grant 19–11–00039).
Zh.В Wu was supported by the Natural Science Foundation of the Jiangsu Province, China (Grant no.В BK20210442),
and the Jiangsu Shuangchuang, Mass Innovation and Entrepreneurship, Talent Program (Grant no.В JSSCBS20210841).
Citation:
N. Yang, Zh. Wu, D. O. Revin, “On the sharp Baer–Suzuki theorem for the π-radical: sporadic groups”, Sibirsk. Mat. Zh., 63:2 (2022), 464–472; Siberian Math. J., 63:2 (2022), 387–394
\Bibitem{YanWuRev22}
\by N.~Yang, Zh.~Wu, D.~O.~Revin
\paper On the sharp Baer--Suzuki theorem for the $\pi$-radical: sporadic groups
\jour Sibirsk. Mat. Zh.
\yr 2022
\vol 63
\issue 2
\pages 464--472
\mathnet{http://mi.mathnet.ru/smj7670}
\crossref{https://doi.org/10.33048/smzh.2022.63.216}
\transl
\jour Siberian Math. J.
\yr 2022
\vol 63
\issue 2
\pages 387--394
\crossref{https://doi.org/10.1134/S0037446622020161}
Linking options:
https://www.mathnet.ru/eng/smj7670
https://www.mathnet.ru/eng/smj/v63/i2/p464
This publication is cited in the following 9 articles:
D. O. Revin, “Shirina Bera–Suzuki polnogo klassa konechnykh grupp konechna”, Algebra i analiz, 37:1 (2025), 141–176
D. O. Revin, A. V. Zavarnitsine, “Generation by conjugate elements of finite almost simple groups with a sporadic socle”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 49 (2024), 135–142
A-M. Liu, Zh. Wang, D. O. Revin, “Toward a Sharp Baer–Suzuki Theorem for the π-Radical: Unipotent Elements of Groups of Lie Type”, Algebra Logic, 2024
N. Yang, Zh. Wu, D. O. Revin, E. P. Vdovin, “On the sharp Baer-Suzuki theorem for the π-radical of a finite group”, Sb. Math., 214:1 (2023), 108–147
Ch. Van, V. Go, D. O. Revin, “K tochnoi teoreme Bera–Suzuki dlya π-radikala: isklyuchitelnye gruppy malogo ranga”, Algebra i logika, 62:1 (2023), 3–32
Danila O. Revin, Andrei V. Zavarnitsine, “On generations by conjugate elements in almost simple groups with socle 2𝐹4(𝑞2)′”, Journal of Group Theory, 2023
Zh. Wang, W. Guo, D. O. Revin, “Toward a Sharp Baer–Suzuki Theorem for the π-Radical: Exceptional Groups of Small Rank”, Algebra Logic, 62:1 (2023), 1
A.-M. Lyu, Ch. Van, D. O. Revin, “K tochnoi teoreme Bera–Suzuki dlya π-radikala: unipotentnye elementy grupp lieva tipa”, Algebra i logika, 62:6 (2023), 708–741
J. Guo, W. Guo, D. O. Revin, V. N. Tyutyanov, “On the Baer–Suzuki Width of Some Radical Classes”, Proc. Steklov Inst. Math. (Suppl.), 317, suppl. 1 (2022), S90–S97