Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2022, Volume 63, Number 2, Pages 427–436
DOI: https://doi.org/10.33048/smzh.2022.63.213
(Mi smj7667)
 

This article is cited in 4 scientific papers (total in 4 papers)

On $p$-universal and $p$-minimal numberings

M. Kh. Faizrahmanov

Kazan (Volga Region) Federal University
Full-text PDF (349 kB) Citations (4)
References:
Abstract: We study the $p$-reducibility of numberings which was introduced and first studied by Degtev. $p$-Reducibility is an effectively bounded version of the $e$-reducibility of numberings. Also, we prove that for every set $A$ there exists an $A$-computable family without universal numberings but admitting $p$-universal numberings and obtain a criterion for the existence of $p$-universal numberings of finite families of $A$-c.e. sets. Finally, we show that every $A$-computable family, with $\emptyset''\leq _TA$, has infinitely many pairwise non-$p$-equivalent $p$-minimal $A$-computable numberings.
Keywords: computable numbering, $A$-computable numbering, $p$-reducibility, universal numbering, $p$-universal numbering, $p$-minimal numbering.
Funding agency Grant number
Russian Science Foundation 18-11-00028
Ministry of Science and Higher Education of the Russian Federation 075-02-2021-1393
The author was supported by the Russian Science Foundation (Grant no. 18–11–00028). His work was carried out in the framework of the program of support of the Mathematical Center of the Volga Region Federal District (Agreement 075–02–2021–1393).
Received: 31.03.2021
Revised: 31.03.2021
Accepted: 10.12.2021
English version:
Siberian Mathematical Journal, 2022, Volume 63, Issue 2, Pages 365–373
DOI: https://doi.org/10.1134/S0037446622020148
Bibliographic databases:
Document Type: Article
UDC: 510.57
Language: Russian
Citation: M. Kh. Faizrahmanov, “On $p$-universal and $p$-minimal numberings”, Sibirsk. Mat. Zh., 63:2 (2022), 427–436; Siberian Math. J., 63:2 (2022), 365–373
Citation in format AMSBIB
\Bibitem{Fai22}
\by M.~Kh.~Faizrahmanov
\paper On~$p$-universal and $p$-minimal numberings
\jour Sibirsk. Mat. Zh.
\yr 2022
\vol 63
\issue 2
\pages 427--436
\mathnet{http://mi.mathnet.ru/smj7667}
\crossref{https://doi.org/10.33048/smzh.2022.63.213}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4440292}
\transl
\jour Siberian Math. J.
\yr 2022
\vol 63
\issue 2
\pages 365--373
\crossref{https://doi.org/10.1134/S0037446622020148}
Linking options:
  • https://www.mathnet.ru/eng/smj7667
  • https://www.mathnet.ru/eng/smj/v63/i2/p427
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ñèáèðñêèé ìàòåìàòè÷åñêèé æóðíàë Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:103
    Full-text PDF :35
    References:29
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024