Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2022, Volume 63, Number 2, Pages 334–343
DOI: https://doi.org/10.33048/smzh.2022.63.206
(Mi smj7660)
 

On discrete universality in the Selberg–Steuding class

R. Kacinskaite

Vytautas Magnus University, Kaunas
References:
Abstract: Let $\mathcal{S}$ be the class of Dirichlet series introduced by Selberg and modified by Steuding, and let $\{\gamma_k: k \in {{\Bbb N}} \}$ be the sequence of the imaginary parts of the nontrivial zeros of the Riemann zeta-function. Using the modified Montgomery's pair correlation conjecture, we prove a universality theorem for a function $L(s)$ in $\mathcal{S}$ on approximation of analytic functions by the shifts $L(s+ih\gamma_k)$, $h>0$.
Keywords: Selberg class, nontrivial zeros of the Riemann zeta-function, universality.
Received: 01.08.2021
Revised: 28.08.2021
Accepted: 11.10.2021
English version:
Siberian Mathematical Journal, 2022, Volume 63, Issue 2, Pages 277–285
DOI: https://doi.org/10.1134/S0037446622020069
Document Type: Article
UDC: 511.2
MSC: 35R30
Language: Russian
Citation: R. Kacinskaite, “On discrete universality in the Selberg–Steuding class”, Sibirsk. Mat. Zh., 63:2 (2022), 334–343; Siberian Math. J., 63:2 (2022), 277–285
Citation in format AMSBIB
\Bibitem{Kac22}
\by R.~Kacinskaite
\paper On~discrete universality in the Selberg--Steuding class
\jour Sibirsk. Mat. Zh.
\yr 2022
\vol 63
\issue 2
\pages 334--343
\mathnet{http://mi.mathnet.ru/smj7660}
\crossref{https://doi.org/10.33048/smzh.2022.63.206}
\transl
\jour Siberian Math. J.
\yr 2022
\vol 63
\issue 2
\pages 277--285
\crossref{https://doi.org/10.1134/S0037446622020069}
Linking options:
  • https://www.mathnet.ru/eng/smj7660
  • https://www.mathnet.ru/eng/smj/v63/i2/p334
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:66
    Full-text PDF :15
    References:24
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024