|
On discrete universality in the Selberg–Steuding class
R. Kacinskaite Vytautas Magnus University, Kaunas
Abstract:
Let $\mathcal{S}$ be the class of Dirichlet series introduced by Selberg and modified by Steuding, and let $\{\gamma_k: k \in {{\Bbb N}} \}$ be the sequence of the imaginary parts of the nontrivial zeros of the Riemann zeta-function. Using the modified Montgomery's pair correlation conjecture, we prove a universality theorem for a function $L(s)$ in $\mathcal{S}$ on approximation of analytic functions by the shifts $L(s+ih\gamma_k)$, $h>0$.
Keywords:
Selberg class, nontrivial zeros of the Riemann zeta-function, universality.
Received: 01.08.2021 Revised: 28.08.2021 Accepted: 11.10.2021
Citation:
R. Kacinskaite, “On discrete universality in the Selberg–Steuding class”, Sibirsk. Mat. Zh., 63:2 (2022), 334–343; Siberian Math. J., 63:2 (2022), 277–285
Linking options:
https://www.mathnet.ru/eng/smj7660 https://www.mathnet.ru/eng/smj/v63/i2/p334
|
Statistics & downloads: |
Abstract page: | 66 | Full-text PDF : | 15 | References: | 24 | First page: | 6 |
|