Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2022, Volume 63, Number 2, Pages 272–282
DOI: https://doi.org/10.33048/smzh.2022.63.203
(Mi smj7657)
 

This article is cited in 8 scientific papers (total in 8 papers)

Essentially invertible measurable operators affiliated to a semifinite von Neumann algebra and commutators

A. M. Bikchentaev

Institute of Mathematics and Mechanics, Kazan (Volga Region) Federal University
Full-text PDF (358 kB) Citations (8)
References:
Abstract: Suppose that a von Neumann operator algebra $\mathcal{M}$ acts on a Hilbert space $\mathcal{H}$ and $\tau$ is a faithful normal semifinite trace on $\mathcal{M}$. If Hermitian operators $X, Y \in S(\mathcal{M}, \tau )$ are such that $-X\leq Y \leq X$ and $Y$ is $\tau$-essentially invertible then so is $X$. Let $0<p\leq 1$. If a $p$-hyponormal operator $A\in S(\mathcal{M}, \tau )$ is right $\tau$-essentially invertible then $A$ is $\tau$-essentially invertible. If a $p$-hyponormal operator $A\in \mathcal{B}(\mathcal{H})$ is right invertible then $A$ is invertible in $\mathcal{B}(\mathcal{H})$. If a hyponormal operator $A \in S( \mathcal{M}, \tau )$ has a right inverse in $S(\mathcal{M}, \tau)$ then $A$ is invertible in $S(\mathcal{M}, \tau)$. If $A, T\in \mathcal{M}$ and $\mu_t(A^n)^{\frac1n}\to 0$ as $n \to \infty$ for every $t>0$ then $AT$ ($TA$) has no right (left) $\tau$-essential inverse in $S(\mathcal{M}, \tau )$. Suppose that $\mathcal{H}$ is separable and $\dim \mathcal{H}=\infty$. A right (left) essentially invertible operator $A \in \mathcal{B}(\mathcal{H})$ is a commutator if and only if the right (left) essential inverse of $A$ is a commutator.
Keywords: Hilbert space, linear operator, von Neumann algebra, normal trace, measurable operator, essential invertibility, commutator.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2022-882
The research was carried out in the framework of the Development Program of the Scientific Educational Mathematical Center of the Volga Federal District (Agreement 075–02–2022–882).
Received: 12.02.2021
Revised: 08.02.2022
Accepted: 10.02.2022
English version:
Siberian Mathematical Journal, 2022, Volume 63, Issue 2, Pages 224–232
DOI: https://doi.org/10.1134/S0037446622020033
Document Type: Article
UDC: 517.983:517.986
MSC: 35R30
Language: Russian
Citation: A. M. Bikchentaev, “Essentially invertible measurable operators affiliated to a semifinite von Neumann algebra and commutators”, Sibirsk. Mat. Zh., 63:2 (2022), 272–282; Siberian Math. J., 63:2 (2022), 224–232
Citation in format AMSBIB
\Bibitem{Bik22}
\by A.~M.~Bikchentaev
\paper Essentially invertible measurable operators affiliated to a~semifinite von~Neumann algebra and commutators
\jour Sibirsk. Mat. Zh.
\yr 2022
\vol 63
\issue 2
\pages 272--282
\mathnet{http://mi.mathnet.ru/smj7657}
\crossref{https://doi.org/10.33048/smzh.2022.63.203}
\transl
\jour Siberian Math. J.
\yr 2022
\vol 63
\issue 2
\pages 224--232
\crossref{https://doi.org/10.1134/S0037446622020033}
Linking options:
  • https://www.mathnet.ru/eng/smj7657
  • https://www.mathnet.ru/eng/smj/v63/i2/p272
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ñèáèðñêèé ìàòåìàòè÷åñêèé æóðíàë Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:317
    Full-text PDF :156
    References:98
    First page:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024