Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2022, Volume 63, Number 2, Pages 241–251
DOI: https://doi.org/10.33048/smzh.2022.63.201
(Mi smj7655)
 

This article is cited in 1 scientific paper (total in 1 paper)

Identities and quasi-identities of pointed algebras

A. O. Basheyevaa, M. Mustafab, A. M. Nurakunovc

a Eurasian National University named after L.N. Gumilyov, Nur-Sultan
b Nazarbayev University Research and Innovation System
c Institute of Mathematics of the National Academy of Sciences of the Kyrgyz Republic
Full-text PDF (339 kB) Citations (1)
References:
Abstract: Each pointed enrichment of an algebra can be regarded as the same algebra with an additional finite set of constant operations. An algebra is pointed whenever it is a pointed enrichment of some algebra. We show that each pointed enrichment of a finite algebra in a finitely axiomatizable residually very finite variety admits a finite basis of identities. We also prove that every pointed enrichment of a finite algebra in a directly representable quasivariety admits a finite basis of quasi-identities. We give some applications of these results and examples.
Keywords: variety, quasivariety, identity, quasi-identity, finite axiomatizability, pointed algebra.
Funding agency Grant number
Nazarbayev University FDCRG 021220FD3851
The work was supported by Nazarbayev University FDCRG Grant no.В 021220FD3851.
Received: 24.02.2021
Revised: 14.04.2021
Accepted: 11.06.2021
English version:
Siberian Mathematical Journal, 2022, Volume 63, Issue 2, Pages 197–205
DOI: https://doi.org/10.1134/S003744662202001X
Bibliographic databases:
Document Type: Article
UDC: 512.57
MSC: 35R30
Language: Russian
Citation: A. O. Basheyeva, M. Mustafa, A. M. Nurakunov, “Identities and quasi-identities of pointed algebras”, Sibirsk. Mat. Zh., 63:2 (2022), 241–251; Siberian Math. J., 63:2 (2022), 197–205
Citation in format AMSBIB
\Bibitem{BasMusNur22}
\by A.~O.~Basheyeva, M.~Mustafa, A.~M.~Nurakunov
\paper Identities and quasi-identities of pointed algebras
\jour Sibirsk. Mat. Zh.
\yr 2022
\vol 63
\issue 2
\pages 241--251
\mathnet{http://mi.mathnet.ru/smj7655}
\crossref{https://doi.org/10.33048/smzh.2022.63.201}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4440279}
\transl
\jour Siberian Math. J.
\yr 2022
\vol 63
\issue 2
\pages 197--205
\crossref{https://doi.org/10.1134/S003744662202001X}
Linking options:
  • https://www.mathnet.ru/eng/smj7655
  • https://www.mathnet.ru/eng/smj/v63/i2/p241
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:103
    Full-text PDF :36
    References:22
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024