Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2022, Volume 63, Number 1, Pages 216–231
DOI: https://doi.org/10.33048/smzh.2022.63.116
(Mi smj7653)
 

This article is cited in 4 scientific papers (total in 4 papers)

Some positive conclusions related to the Embrechts–Goldie conjecture

Zh. Cuia, Yu. Wangb, H. Xub

a School of Mathematics and Statistics, Changshu Institute of Technology, Suzhou 215000, China
b School of Mathematical Sciences, Soochow University, Suzhou 215006, China
Full-text PDF (331 kB) Citations (4)
References:
Abstract: We give some conditions under which if an infinitely divisible distribution supported on $[0,\infty)$ belongs to the intersection of the distribution class $\mathcal{L}(\gamma)$ for some $\gamma\ge0$ and the distribution class $\mathcal{OS}$, then so does the corresponding Lévy distribution or its convolution with itself. To this end, we discuss the closure under compound convolution roots for the class and provide some types of distributions satisfying the above conditions. Therefore, this leads to some positive conclusions related to the Embrechts–Goldie conjecture in contrast to the fact that all corresponding previous results for the distribution class $\mathcal{L}(\gamma)\cap\mathcal{OS}$ were negative.
Keywords: infinitely divisible distribution, Lévy distribution, distribution class $\mathcal{L}(\gamma)\cap\mathcal{OS}$, compound convolution roots, closure, Embrechts–Goldie conjecture.
Funding agency Grant number
National Natural Science Foundation of China 11071182
Y. Wang’s research was supported by the National Natural Science Foundation of China (no. 11071182).
Received: 27.03.2021
Revised: 27.03.2021
Accepted: 14.04.2021
English version:
Siberian Mathematical Journal, 2022, Volume 63, Issue 1, Pages 179–192
DOI: https://doi.org/10.1134/S0037446622010165
Bibliographic databases:
Document Type: Article
UDC: 519.21
Language: Russian
Citation: Zh. Cui, Yu. Wang, H. Xu, “Some positive conclusions related to the Embrechts–Goldie conjecture”, Sibirsk. Mat. Zh., 63:1 (2022), 216–231; Siberian Math. J., 63:1 (2022), 179–192
Citation in format AMSBIB
\Bibitem{CuiWanXu22}
\by Zh.~Cui, Yu.~Wang, H.~Xu
\paper Some positive conclusions related to the Embrechts--Goldie conjecture
\jour Sibirsk. Mat. Zh.
\yr 2022
\vol 63
\issue 1
\pages 216--231
\mathnet{http://mi.mathnet.ru/smj7653}
\crossref{https://doi.org/10.33048/smzh.2022.63.116}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4440277}
\transl
\jour Siberian Math. J.
\yr 2022
\vol 63
\issue 1
\pages 179--192
\crossref{https://doi.org/10.1134/S0037446622010165}
Linking options:
  • https://www.mathnet.ru/eng/smj7653
  • https://www.mathnet.ru/eng/smj/v63/i1/p216
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ñèáèðñêèé ìàòåìàòè÷åñêèé æóðíàë Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:70
    Full-text PDF :13
    References:25
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024