Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2022, Volume 63, Number 1, Pages 180–196
DOI: https://doi.org/10.33048/smzh.2022.63.112
(Mi smj7649)
 

This article is cited in 4 scientific papers (total in 4 papers)

On curves with affine-congruent arcs in an $n$-dimensional affine space

I. V. Polikanova

Altai State Pedagogical University, Barnaul, Russian Federation
Full-text PDF (326 kB) Citations (4)
References:
Abstract: Considering an $n$-dimensional affine space, we demonstrate that enics (moment curves) are the only nondegenerate curves in the class of $C^n$-smooth curves every two oriented arcs of which are affine congruent. The proof is reduced to a system of functional-differential equations.
Keywords: curves with affine congruent arcs, straight line, parabola, cubic, enic, moment curve, Veronese curve, system of functional equations.
Received: 23.07.2020
Revised: 13.01.2021
Accepted: 11.10.2021
English version:
Siberian Mathematical Journal, 2022, Volume 63, Issue 1, Pages 149–162
DOI: https://doi.org/10.1134/S0037446622010128
Bibliographic databases:
Document Type: Article
UDC: 514.754.24
Language: Russian
Citation: I. V. Polikanova, “On curves with affine-congruent arcs in an $n$-dimensional affine space”, Sibirsk. Mat. Zh., 63:1 (2022), 180–196; Siberian Math. J., 63:1 (2022), 149–162
Citation in format AMSBIB
\Bibitem{Pol22}
\by I.~V.~Polikanova
\paper On~curves with affine-congruent~arcs in an~$n$-dimensional affine space
\jour Sibirsk. Mat. Zh.
\yr 2022
\vol 63
\issue 1
\pages 180--196
\mathnet{http://mi.mathnet.ru/smj7649}
\crossref{https://doi.org/10.33048/smzh.2022.63.112}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4440273}
\transl
\jour Siberian Math. J.
\yr 2022
\vol 63
\issue 1
\pages 149--162
\crossref{https://doi.org/10.1134/S0037446622010128}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85124011927}
Linking options:
  • https://www.mathnet.ru/eng/smj7649
  • https://www.mathnet.ru/eng/smj/v63/i1/p180
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:100
    Full-text PDF :31
    References:32
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024