Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2022, Volume 63, Number 1, Pages 104–115
DOI: https://doi.org/10.33048/smzh.2022.63.107
(Mi smj7644)
 

Nonfinitary algebras and their automorphism groups

I. N. Zotov, V. M. Levchuk

Siberian Federal University, Krasnoyarsk
References:
Abstract: Let $\Gamma$ be a linearly ordered set (chain), and let $K$ be an associative commutative ring with a unity. We study the module of all matrices over $K$ with indices in $\Gamma$ and the submodule $NT({\Gamma},K)$ of all matrices with zeros on and above the main diagonal. All finitary matrices in $NT({\Gamma},K)$ form a nil-ring. The automorphisms of the adjoint group (in particular, Ado's and McLain's groups) were already described for a ring $K$ with no zero divisors. They depend on the group $\mathcal{A} (\Gamma)$ of all automorphisms and antiautomorphisms of $\Gamma$. We show that $NT({\Gamma}, K)$ is an algebra with the usual matrix product iff either (a) $\Gamma$ is isometric or anti-isometric to the chain of naturals and $\mathcal{A} (\Gamma)=1$ or (b) $\Gamma$ is isometric to the chain of integers and $\mathcal{A} (\Gamma)$ is the infinite dihedral group. Any of these algebras is radical but not a nil-ring. When $K$ is a domain, we find the automorphism groups of the ring $\mathcal{R}=NT({\Gamma}, K)$ of the associated Lie ring $L(\mathcal{R})$ and the adjoint group $G(\mathcal{R})$ (Theorem 3). All three automorphism groups coincide in case {(a)}. In the main case (b) the group $\operatorname{Aut} \mathcal{R}$ has more complicated structure, and the index of each of the groups $\operatorname{Aut} L(\mathcal{R})$ and $\operatorname{Aut} G(\mathcal{R})$ is equal to $2$. As a consequence, we prove that every local automorphism of the algebras $\mathcal{R}$ and $L(\mathcal{R})$ is a fixed automorphism modulo $\mathcal{R}^2$.
Keywords: nil-triangular subalgebra, nonfinitary generalizations, radical ring, associated Lie ring, adjoint group, automorphism group, local automorphism.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075–02–2021–1388
The work was supported by the Krasnoyarsk Mathematical Center financed by the Ministry of Science and Higher Education of the Russian Federation in the framework of the establishment and development of Regional Centers for Mathematics Research and Education (Agreement 075–02–2021–1388).
Received: 12.05.2021
Revised: 13.09.2021
Accepted: 11.10.2021
English version:
Siberian Mathematical Journal, 2022, Volume 63, Issue 1, Pages 87–96
DOI: https://doi.org/10.1134/S0037446622010074
Bibliographic databases:
Document Type: Article
UDC: 512.54+512.55
Language: Russian
Citation: I. N. Zotov, V. M. Levchuk, “Nonfinitary algebras and their automorphism groups”, Sibirsk. Mat. Zh., 63:1 (2022), 104–115; Siberian Math. J., 63:1 (2022), 87–96
Citation in format AMSBIB
\Bibitem{ZotLev22}
\by I.~N.~Zotov, V.~M.~Levchuk
\paper Nonfinitary algebras and their automorphism groups
\jour Sibirsk. Mat. Zh.
\yr 2022
\vol 63
\issue 1
\pages 104--115
\mathnet{http://mi.mathnet.ru/smj7644}
\crossref{https://doi.org/10.33048/smzh.2022.63.107}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4440268}
\transl
\jour Siberian Math. J.
\yr 2022
\vol 63
\issue 1
\pages 87--96
\crossref{https://doi.org/10.1134/S0037446622010074}
Linking options:
  • https://www.mathnet.ru/eng/smj7644
  • https://www.mathnet.ru/eng/smj/v63/i1/p104
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:102
    Full-text PDF :25
    References:22
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024