Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2021, Volume 62, Number 6, Pages 1191–1214
DOI: https://doi.org/10.33048/smzh.2021.62.601
(Mi smj7623)
 

This article is cited in 1 scientific paper (total in 1 paper)

Generalized Rickart $\ast$-rings

M. Ahmadi, A. Moussavi

Department of Pure Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran
Full-text PDF (484 kB) Citations (1)
References:
Abstract: As a common generalization of Rickart $\ast$-rings and generalized Baer $\ast$-rings, we say that a ring $R$ with an involution $\ast$ is a generalized Rickart $\ast$-ring if for all $x\in R$ the right annihilator of $ x^n$ is generated by a projection for some positive integer $n$ depending on $x$. The abelian generalized Rickart $\ast$-rings are closed under finite direct product. We address the behavior of the generalized Rickart $\ast$ condition with respect to various constructions and extensions, present some families of generalized Rickart $\ast$-rings, study connections to the related classes of rings, and indicate various examples of generalized Rickart $\ast$-rings. Also, we provide some large classes of finite and infinite-dimensional Banach $\ast$-algebras that are generalized Rickart $\ast$-rings but neither Rickart $\ast$-rings nor generalized Baer $\ast$-rings.
Keywords: Rickart $\ast$-ring, generalized Rickart $\ast$-ring, generalized p.p. ring, generalized Baer $\ast $-ring, Banach ${\ast}$-algebra.
Received: 20.11.2020
Revised: 28.12.2020
Accepted: 22.01.2021
English version:
Siberian Mathematical Journal, 2021, Volume 62, Issue 6, Pages 963–980
DOI: https://doi.org/10.1134/S003744662106001X
Bibliographic databases:
Document Type: Article
UDC: 512.552
MSC: 35R30
Language: Russian
Citation: M. Ahmadi, A. Moussavi, “Generalized Rickart $\ast$-rings”, Sibirsk. Mat. Zh., 62:6 (2021), 1191–1214; Siberian Math. J., 62:6 (2021), 963–980
Citation in format AMSBIB
\Bibitem{AhmMou21}
\by M.~Ahmadi, A.~Moussavi
\paper Generalized Rickart $\ast$-rings
\jour Sibirsk. Mat. Zh.
\yr 2021
\vol 62
\issue 6
\pages 1191--1214
\mathnet{http://mi.mathnet.ru/smj7623}
\crossref{https://doi.org/10.33048/smzh.2021.62.601}
\elib{https://elibrary.ru/item.asp?id=47830137}
\transl
\jour Siberian Math. J.
\yr 2021
\vol 62
\issue 6
\pages 963--980
\crossref{https://doi.org/10.1134/S003744662106001X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000723707400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85120566768}
Linking options:
  • https://www.mathnet.ru/eng/smj7623
  • https://www.mathnet.ru/eng/smj/v62/i6/p1191
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:225
    Full-text PDF :50
    References:51
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024