Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2021, Volume 62, Number 5, Pages 1124–1142
DOI: https://doi.org/10.33048/smzh.2021.62.513
(Mi smj7619)
 

This article is cited in 4 scientific papers (total in 4 papers)

On justification of the Gelfand–Levitan–Krein method for a two-dimensional inverse problem

V. G. Romanov

Sobolev Institute of Mathematics, Novosibirsk, Russia
Full-text PDF (496 kB) Citations (4)
References:
Abstract: For a hyperbolic equation of the second order, we consider the inverse problem of recovering the coefficient $q(x,y)$ in this equation. We discuss the scheme of solution of the problem which was proposed by Kabanikhin about 30 years ago. This scheme generalizes the Gelfand–Levitan–Krein method for the solution of the inverse spectral problem to the multidimensional case and reduces the solution of the inverse problem to some infinite system of linear integral equations. No mathematical justification for this scheme has been obtained yet. But numerical experiments based on the $N$-approximation produced good results. In this article, we justify some elements of the scheme related to the construction of the infinite system of integral equations in the case when the coefficient $q(x,y)$ is analytic in $x$. In particular, we prove the convergence of the series in these equations and find the conditions for the $N$-approximation of the system. We also establish that the infinite system of integral equations is not Fredholm. The question of the solvability of the systems remains open.
Keywords: inverse problem, multidimensional Gelfand–Levitan–Krein method, integral equation, ill-posed Cauchy problem, space of analytic functions.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 0314-2019-0011
The work was carried out in the framework of the State Task to the Sobolev Institute of Mathematics (Project 0314–2019–0011).
Received: 03.06.2021
Revised: 28.06.2021
Accepted: 11.08.2021
English version:
Siberian Mathematical Journal, 2021, Volume 62, Issue 5, Pages 908–924
DOI: https://doi.org/10.1134/S003744662105013X
Bibliographic databases:
Document Type: Article
UDC: 517.946
MSC: 35R30
Language: Russian
Citation: V. G. Romanov, “On justification of the Gelfand–Levitan–Krein method for a two-dimensional inverse problem”, Sibirsk. Mat. Zh., 62:5 (2021), 1124–1142; Siberian Math. J., 62:5 (2021), 908–924
Citation in format AMSBIB
\Bibitem{Rom21}
\by V.~G.~Romanov
\paper On justification of the Gelfand--Levitan--Krein method for a~two-dimensional inverse problem
\jour Sibirsk. Mat. Zh.
\yr 2021
\vol 62
\issue 5
\pages 1124--1142
\mathnet{http://mi.mathnet.ru/smj7619}
\crossref{https://doi.org/10.33048/smzh.2021.62.513}
\elib{https://elibrary.ru/item.asp?id=47095265}
\transl
\jour Siberian Math. J.
\yr 2021
\vol 62
\issue 5
\pages 908--924
\crossref{https://doi.org/10.1134/S003744662105013X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000698762500013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85115639765}
Linking options:
  • https://www.mathnet.ru/eng/smj7619
  • https://www.mathnet.ru/eng/smj/v62/i5/p1124
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024