Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2021, Volume 62, Number 5, Pages 1091–1108
DOI: https://doi.org/10.33048/smzh.2021.62.511
(Mi smj7617)
 

This article is cited in 3 scientific papers (total in 3 papers)

New degree spectra of Polish spaces

A. G. Mel'nikovab

a School of Mathematics and Statistics, Victoria University of Wellington, Wellington, New Zealand
b Sobolev Institute of Mathematics, Novosibirsk, Russia
Full-text PDF (581 kB) Citations (3)
References:
Abstract: The main result is as follows: Fix an arbitrary prime $q$. A $q$-divisible torsion-free (discrete, countable) abelian group $G$ has a $\Delta^0_2$-presentation if, and only if, its connected Pontryagin–van Kampen Polish dual $\widehat{G}$ admits a computable complete metrization (in which we do not require the operations to be computable). We use this jump-inversion/duality theorem to transfer the results on the degree spectra of torsion-free abelian groups to the results about the degree spectra of Polish spaces up to homeomorphism. For instance, it follows that for every computable ordinal $\alpha>1$ and each $=\mathbf{a} > 0^{(\alpha)}$ there is a connected compact Polish space having proper $\alpha^{th}$ jump degree $\mathbf{a}$ (up to homeomorphism). Also, for every computable ordinal $\beta$ of the form $1+\delta + 2n +1$, where $\delta$ is zero or is a limit ordinal and $n \in \omega$, there is a connected Polish space having an $X$-computable copy if and only if $X$ is $non$-$low_{\beta}$. In particular, there is a connected Polish space having exactly the $non$-$low_{2}$ complete metrizations. The case when $\beta=2$ is an unexpected consequence of the main result of the author's M.Sc. Thesis written under the supervision of Sergey S. Goncharov.
Keywords: computable analysis, constructive group, decidability, connected space.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2019-1613
Rutherford Discovery Fellowship RDF-MAU1905
A. G. Melnikov was supported by the Mathematical Center in Akademgorodok under Agreement No. 075–15–2019–1613 with the Ministry of Science and Higher Education of the Russian Federation, and Rutherford Discovery Fellowship (Wellington) RDF-MAU1905, Royal Society Te Apārangi.
Received: 26.05.2021
Revised: 27.06.2021
Accepted: 11.08.2021
English version:
Siberian Mathematical Journal, 2021, Volume 62, Issue 5, Pages 882–894
DOI: https://doi.org/10.1134/S0037446621050116
Bibliographic databases:
Document Type: Article
UDC: 510.5
MSC: 35R30
Language: Russian
Citation: A. G. Mel'nikov, “New degree spectra of Polish spaces”, Sibirsk. Mat. Zh., 62:5 (2021), 1091–1108; Siberian Math. J., 62:5 (2021), 882–894
Citation in format AMSBIB
\Bibitem{Mel21}
\by A.~G.~Mel'nikov
\paper New degree spectra of Polish spaces
\jour Sibirsk. Mat. Zh.
\yr 2021
\vol 62
\issue 5
\pages 1091--1108
\mathnet{http://mi.mathnet.ru/smj7617}
\crossref{https://doi.org/10.33048/smzh.2021.62.511}
\elib{https://elibrary.ru/item.asp?id=47064156}
\transl
\jour Siberian Math. J.
\yr 2021
\vol 62
\issue 5
\pages 882--894
\crossref{https://doi.org/10.1134/S0037446621050116}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000698762500011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85115648020}
Linking options:
  • https://www.mathnet.ru/eng/smj7617
  • https://www.mathnet.ru/eng/smj/v62/i5/p1091
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024