Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2021, Volume 62, Number 5, Pages 1073–1083
DOI: https://doi.org/10.33048/smzh.2021.62.509
(Mi smj7615)
 

A Dedekind criterion over valued fields

L. El Fadila, M. Boulagouaza, A. Deajimb

a Department of Mathematics, Faculty of Sciences Dhar-Mahraz, University of Sidi Mohamed Ben Abdellah, Fes, Morocco
b Department of Mathematics, King Khalid University, Abha, Saudi Arabia
References:
Abstract: Let $(K,\nu)$ be an arbitrary-rank valued field, let $R_\nu$ be the valuation ring of $(K,\nu)$, and let $K(\alpha)/K$ be a separable finite field extension generated over $K$ by a root of a monic irreducible polynomial $f\in R_\nu[X]$. We give some necessary and sufficient conditions for $R_\nu[\alpha]$ to be integrally closed. We further characterize the integral closedness of $R_\nu[\alpha]$ which is based on information about the valuations on $K(\alpha)$ extending $\nu$. Our results enhance and generalize some existing results as well as provide applications and examples.
Keywords: Dedekind criterion, valued field, extensions of a valuation, integral closure.
Funding agency Grant number
King Khalid University GRP/360/42
El Fadil and A. Deajim extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the General Research Project under grant number GRP/360/42.
Received: 17.01.2021
Revised: 12.04.2021
Accepted: 14.04.2021
English version:
Siberian Mathematical Journal, 2021, Volume 62, Issue 5, Pages 868–875
DOI: https://doi.org/10.1134/S0037446621050098
Bibliographic databases:
Document Type: Article
UDC: 512.62
MSC: 35R30
Language: Russian
Citation: L. El Fadil, M. Boulagouaz, A. Deajim, “A Dedekind criterion over valued fields”, Sibirsk. Mat. Zh., 62:5 (2021), 1073–1083; Siberian Math. J., 62:5 (2021), 868–875
Citation in format AMSBIB
\Bibitem{El BouDea21}
\by L.~El Fadil, M.~Boulagouaz, A.~Deajim
\paper A~Dedekind criterion over valued fields
\jour Sibirsk. Mat. Zh.
\yr 2021
\vol 62
\issue 5
\pages 1073--1083
\mathnet{http://mi.mathnet.ru/smj7615}
\crossref{https://doi.org/10.33048/smzh.2021.62.509}
\elib{https://elibrary.ru/item.asp?id=47051427}
\transl
\jour Siberian Math. J.
\yr 2021
\vol 62
\issue 5
\pages 868--875
\crossref{https://doi.org/10.1134/S0037446621050098}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000698762500009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85115641127}
Linking options:
  • https://www.mathnet.ru/eng/smj7615
  • https://www.mathnet.ru/eng/smj/v62/i5/p1073
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024