Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2021, Volume 62, Number 5, Pages 1039–1048
DOI: https://doi.org/10.33048/smzh.2021.62.506
(Mi smj7612)
 

This article is cited in 1 scientific paper (total in 1 paper)

On sizes of $1$-cross intersecting set pair systems

A. V. Kostochkaab, G. McCourta, M. Nahvia

a University of Illinois at Urbana–Champaign, Urbana IL, USA
b Sobolev Institute of Mathematics, Novosibirsk, Russia
Full-text PDF (475 kB) Citations (1)
References:
Abstract: Let $\{(A_i,B_i)\}_{i=1}^m$ be a set pair system. Füredi, Gyárfás, and Király called it $1$-cross intersecting if $|A_i\cap B_j|$ is $1$ when $i\neq j$ and $0$ if $i=j$. They studied the systems and their generalizations and, in particular, considered $m(a,b,1)$, the maximum size of a $1$-cross intersecting set pair system in which $|A_i|\leq a$ and $|B_i|\leq b$ for all $i$. Füredi, Gyárfás, and Király proved that $m(n,n,1)\geq 5^{(n-1)/2}$ and asked whether there are upper bounds on $m(n,n,1)$ significantly better than the classical bound ${2n\choose n}$ of Bollobás for cross intersecting set pair systems. Answering one of their questions, Holzman proved recently that if $a,b\geq 2$, then $m(a,b,1)\leq \frac{29}{30}\binom{a+b}{a}$. He also conjectured that the factor $\frac{29}{30}$ in his bound can be replaced by $\frac{5}{6}$. Our goal is to prove this bound.
Keywords: set pair system, cross intersecting systems, edge partitions.
Funding agency Grant number
National Science Foundation DMS-1600592
DMS-1937241
Russian Foundation for Basic Research 19-01-00682
A. V. Kostochka was supported in part by the NSF Grant DMS–1600592, the NSF RTG Grant DMS–1937241, and the Russian Foundation for Basic Research (Grant 19–01–00682). G. McCourt was supported in part by the NSF RTG Grant DMS–1937241. M. Nahvi was supported in part by Arnold O. Beckman Campus Research Board Award RB20003 of the University of Illinois at Urbana–Champaign.
Received: 24.04.2021
Revised: 24.04.2021
Accepted: 11.06.2021
English version:
Siberian Mathematical Journal, 2021, Volume 62, Issue 5, Pages 842–849
DOI: https://doi.org/10.1134/S0037446621050062
Bibliographic databases:
Document Type: Article
UDC: 519.101
MSC: 35R30
Language: Russian
Citation: A. V. Kostochka, G. McCourt, M. Nahvi, “On sizes of $1$-cross intersecting set pair systems”, Sibirsk. Mat. Zh., 62:5 (2021), 1039–1048; Siberian Math. J., 62:5 (2021), 842–849
Citation in format AMSBIB
\Bibitem{KosMccNah21}
\by A.~V.~Kostochka, G.~McCourt, M.~Nahvi
\paper On sizes of $1$-cross intersecting set pair systems
\jour Sibirsk. Mat. Zh.
\yr 2021
\vol 62
\issue 5
\pages 1039--1048
\mathnet{http://mi.mathnet.ru/smj7612}
\crossref{https://doi.org/10.33048/smzh.2021.62.506}
\elib{https://elibrary.ru/item.asp?id=47094828}
\transl
\jour Siberian Math. J.
\yr 2021
\vol 62
\issue 5
\pages 842--849
\crossref{https://doi.org/10.1134/S0037446621050062}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000698762500006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85115612145}
Linking options:
  • https://www.mathnet.ru/eng/smj7612
  • https://www.mathnet.ru/eng/smj/v62/i5/p1039
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ñèáèðñêèé ìàòåìàòè÷åñêèé æóðíàë Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:157
    Full-text PDF :34
    References:23
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024