Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2021, Volume 62, Number 5, Pages 983–994
DOI: https://doi.org/10.33048/smzh.2021.62.503
(Mi smj7609)
 

On categoricity spectra for locally finite graphs

N. A. Bazhenov, M. I. Marchuk

Sobolev Institute of Mathematics, Novosibirsk, Russia
References:
Abstract: Under study is the algorithmic complexity of isomorphisms between computable copies of locally finite graphs $G$ (undirected graphs whose every vertex has finite degree). We obtain the following results: If $G$ has only finitely many components then $G$ is $\mathbf{d}$-computably categorical for every Turing degree $\mathbf{d}$ from the class $PA(\mathbf{0}')$. If $G$ has infinitely many components then $G$ is $\mathbf{0}''$-computably categorical. We exhibit a series of examples showing that the obtained bounds are sharp.
Keywords: computable categoricity, autostability, degree of categoricity, categoricity spectrum, computable model, locally finite graph.
Funding agency Grant number
Russian Foundation for Basic Research 20-31-70006
The authors were supported by the Russian Foundation for Basic Research (Grant 20–31–70006).
Received: 25.02.2021
Revised: 19.04.2021
Accepted: 11.06.2021
English version:
Siberian Mathematical Journal, 2021, Volume 62, Issue 5, Pages 796–804
DOI: https://doi.org/10.1134/S0037446621050037
Bibliographic databases:
Document Type: Article
UDC: 510.5
MSC: 35R30
Language: Russian
Citation: N. A. Bazhenov, M. I. Marchuk, “On categoricity spectra for locally finite graphs”, Sibirsk. Mat. Zh., 62:5 (2021), 983–994; Siberian Math. J., 62:5 (2021), 796–804
Citation in format AMSBIB
\Bibitem{BazMar21}
\by N.~A.~Bazhenov, M.~I.~Marchuk
\paper On~categoricity spectra for locally finite graphs
\jour Sibirsk. Mat. Zh.
\yr 2021
\vol 62
\issue 5
\pages 983--994
\mathnet{http://mi.mathnet.ru/smj7609}
\crossref{https://doi.org/10.33048/smzh.2021.62.503}
\elib{https://elibrary.ru/item.asp?id=47089200}
\transl
\jour Siberian Math. J.
\yr 2021
\vol 62
\issue 5
\pages 796--804
\crossref{https://doi.org/10.1134/S0037446621050037}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85115628413}
Linking options:
  • https://www.mathnet.ru/eng/smj7609
  • https://www.mathnet.ru/eng/smj/v62/i5/p983
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:134
    Full-text PDF :43
    References:22
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024