Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2021, Volume 62, Number 4, Pages 845–863
DOI: https://doi.org/10.33048/smzh.2021.62.412
(Mi smj7600)
 

Intrinsic geometry and boundary structure of plane domains

O. Rainioa, T. Sugawab, M. Vuorinena

a Department of Mathematics and Statistics, University of Turku, Turku, Finland
b Graduate School of Information Sciences, Tohoku University, Aoba-ku, Sendai, Japan
References:
Abstract: Given a nonempty compact set $E$ in a proper subdomain $\Omega$ of the complex plane, we denote the diameter of $E$ and the distance from $E$ to the boundary of $\Omega$ by $d(E)$ and $d(E,\partial\Omega)$, respectively. The quantity $d(E)/d(E,\partial\Omega)$ is invariant under similarities and plays an important role in geometric function theory. In case $\Omega$ has the hyperbolic distance $h_\Omega(z,w)$, we consider the infimum $\kappa(\Omega)$ of the quantity $h_\Omega(E)/\log(1+d(E)/d(E,\partial\Omega))$ over compact subsets $E$ of $\Omega$ with at least two points, where $h_\Omega(E)$ stands for the hyperbolic diameter of $E$. Let the upper half-plane be $\Bbb{H}$. We show that $\kappa(\Omega)$ is positive if and only if the boundary of $\Omega$ is uniformly perfect and $\kappa(\Omega)\le \kappa(\Bbb{H})$ for all $\Omega$, with equality holding precisely when $\Omega$ is convex.
Keywords: condenser capacity, hyperbolic metric, uniformly perfect set.
Funding agency Grant number
Japan Society for the Promotion of Science JP17H02847
The authors were supported in part by the JSPS KAKENHI (Grant JP17H02847).
Received: 17.12.2020
Revised: 10.02.2021
Accepted: 24.02.2021
English version:
Siberian Mathematical Journal, 2021, Volume 62, Issue 4, Pages 691–706
DOI: https://doi.org/10.1134/S0037446621040121
Bibliographic databases:
Document Type: Article
UDC: 517.54
Language: Russian
Citation: O. Rainio, T. Sugawa, M. Vuorinen, “Intrinsic geometry and boundary structure of plane domains”, Sibirsk. Mat. Zh., 62:4 (2021), 845–863; Siberian Math. J., 62:4 (2021), 691–706
Citation in format AMSBIB
\Bibitem{RaiSugVuo21}
\by O.~Rainio, T.~Sugawa, M.~Vuorinen
\paper Intrinsic geometry and boundary structure of plane domains
\jour Sibirsk. Mat. Zh.
\yr 2021
\vol 62
\issue 4
\pages 845--863
\mathnet{http://mi.mathnet.ru/smj7600}
\crossref{https://doi.org/10.33048/smzh.2021.62.412}
\elib{https://elibrary.ru/item.asp?id=46995311}
\transl
\jour Siberian Math. J.
\yr 2021
\vol 62
\issue 4
\pages 691--706
\crossref{https://doi.org/10.1134/S0037446621040121}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000682525600012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85112654791}
Linking options:
  • https://www.mathnet.ru/eng/smj7600
  • https://www.mathnet.ru/eng/smj/v62/i4/p845
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024