|
On unconditional and absolute convergence of the Haar series in the metric of $L^{p}[0,1]$ with $0<p<1$
M. G. Grigoryan Yerevan State University, Yerevan, Armenia
Abstract:
We prove that there exists a universal Haar series of the form $\sum\nolimits_{k=0}^{\infty}a_{k}h_{k}(x)$ with $a_{k}\searrow 0$ such that, for all $0<p<1$ and $f\in L^{p}[0,1)$, there is a numeric sequence $\{\delta_{k}:\delta_{k}=1$ or $0$, $k=0,1,2,\dots \}$, for which the series $\sum\nolimits_{k=0}^{\infty}\delta_{k}a_{k}h_{k}(x)$ converges absolutely to $f(x)$ in $ L^{p}[0,1)$.
Keywords:
Haar system, unconditional and absolute convergence, $L^{p}[0,1)$ with $0<p<1$.
Received: 05.11.2020 Revised: 25.04.2021 Accepted: 11.06.2021
Citation:
M. G. Grigoryan, “On unconditional and absolute convergence of the Haar series in the metric of $L^{p}[0,1]$ with $0<p<1$”, Sibirsk. Mat. Zh., 62:4 (2021), 747–757; Siberian Math. J., 62:4 (2021), 607–615
Linking options:
https://www.mathnet.ru/eng/smj7592 https://www.mathnet.ru/eng/smj/v62/i4/p747
|
|