|
This article is cited in 6 scientific papers (total in 6 papers)
Separated lattices of multiply $\sigma$-local formations
N. N. Vorob'ev, I. I. Stasel'ko, A. O. Hojagulyyev Vitebsk State University, Vitebsk, Belarus
Abstract:
Let $n > 0$ and let $\sigma = \{\sigma_i \mid i \in I\}$ be a partition of the set of all primes ${\Bbb P}$. We prove that the lattice of all $n$-multiply $\sigma$-local formations is inductive and $\mathfrak{G}$-separated.
Keywords:
finite group, formation of groups, formation $\sigma$-function, $n$-multiply $\sigma$-local formation, lattice of formations, inductive lattice of formations, separated lattice of formations.
Received: 04.09.2020 Revised: 19.04.2021 Accepted: 11.06.2021
Citation:
N. N. Vorob'ev, I. I. Stasel'ko, A. O. Hojagulyyev, “Separated lattices of multiply $\sigma$-local formations”, Sibirsk. Mat. Zh., 62:4 (2021), 721–735; Siberian Math. J., 62:4 (2021), 586–597
Linking options:
https://www.mathnet.ru/eng/smj7590 https://www.mathnet.ru/eng/smj/v62/i4/p721
|
|