Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2021, Volume 62, Number 3, Pages 686–710
DOI: https://doi.org/10.33048/smzh.2021.62.319
(Mi smj7588)
 

This article is cited in 5 scientific papers (total in 5 papers)

Radon transform on Sobolev spaces

V. A. Sharafutdinov

Sobolev Institute of Mathematics, Novosibirsk, Russia
Full-text PDF (563 kB) Citations (5)
References:
Abstract: The Radon transform $R$ maps a function $f$ on ${\Bbb R}^n$ to the family of the integrals of $f$ over all hyperplanes. The classical Reshetnyak formula (also called the Plancherel formula for the Radon transform) states that $\|f\|_{L^2({\Bbb R}^n)}=\|Rf\|_{H^{(n-1)/2}_{(n-1)/2}({\Bbb S}^{n-1}\times{\Bbb R})}$, where $\|\cdot\|_{H^{(n-1)/2}_{(n-1)/2}({\Bbb S}^{n-1}\times{\Bbb R})}$ is some special norm. The formula extends the Radon transform to the bijective Hilbert space isometry $R:L^2({\Bbb R}^n)\rightarrow H^{(n-1)/2}_{(n-1)/2,e}({\Bbb S}^{n-1}\times{\Bbb R})$. Given reals $r$, $s$, and $t>-n/2$, we introduce the Sobolev type spaces $H^{(r,s)}_t({\Bbb R}^n)$ and $H^{(r,s)}_{t,e}({\Bbb S}^{n-1}\times{\Bbb{R}})$ and prove the version of the Reshetnyak formula: $\|f\|_{H^{(r,s)}_t({\Bbb R}^n)}=\|Rf\|_{H^{(r,(s+n-1)/2)}_{t+(n-1)/2}({\Bbb S}^{n-1}\times{\Bbb R})}$. The formula extends the Radon transform to the bijective Hilbert space isometry $R:H^{(r,s)}_t({\Bbb R}^n)\rightarrow H^{(r,s+(n-1)/2)}_{t+(n-1)/2,e}({\Bbb S}^{n-1}\times{\Bbb R})$. If $r\ge0$ and $s\ge0$ are integers then $H^{(r,s)}_{0,e}({\Bbb S}^{n-1}\times {\Bbb{R}})$ consists of the even functions $\varphi(\xi,p)$ with square integrable derivatives of order $\le r$ with respect to $\xi$ and order $\le s$ with respect to $p$.
Keywords: Radon transform, Sobolev spaces, Reshetnyak formula.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-2019-1675
The author was supported by the Mathematical Center in Akademgorodok (Agreement No. 075–2019–1675 with the Ministry of Science and Higher Education of the Russian Federation).
Received: 08.12.2020
Revised: 08.12.2020
Accepted: 14.04.2021
English version:
Siberian Mathematical Journal, 2021, Volume 62, Issue 3, Pages 560–580
DOI: https://doi.org/10.1134/S0037446621030198
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: V. A. Sharafutdinov, “Radon transform on Sobolev spaces”, Sibirsk. Mat. Zh., 62:3 (2021), 686–710; Siberian Math. J., 62:3 (2021), 560–580
Citation in format AMSBIB
\Bibitem{Sha21}
\by V.~A.~Sharafutdinov
\paper Radon transform on Sobolev spaces
\jour Sibirsk. Mat. Zh.
\yr 2021
\vol 62
\issue 3
\pages 686--710
\mathnet{http://mi.mathnet.ru/smj7588}
\crossref{https://doi.org/10.33048/smzh.2021.62.319}
\elib{https://elibrary.ru/item.asp?id=46919483}
\transl
\jour Siberian Math. J.
\yr 2021
\vol 62
\issue 3
\pages 560--580
\crossref{https://doi.org/10.1134/S0037446621030198}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000655743500019}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85109939228}
Linking options:
  • https://www.mathnet.ru/eng/smj7588
  • https://www.mathnet.ru/eng/smj/v62/i3/p686
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:231
    Full-text PDF :106
    References:35
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024