|
This article is cited in 1 scientific paper (total in 1 paper)
On split Malcev Poisson algebras
J. M. Sánchez CMUC, Departamento de Matemática, Universidade de Coimbra, Apartado 3008, 3001-454 Coimbra, Portugal
Abstract:
We introduce the class of split Malcev Poisson algebras as the natural extension of split (noncommutative) Poisson algebras. We show that if $P$ is a split Malcev Poisson algebra then $P = \oplus_{j \in J}I_j$ with $I_j$ a nonzero ideal of $P$ such that $\{I_{j_1},I_{j_2}\} = I_{j_1}I_{j_2}= 0$ for $j_1 \neq j_2$. Under some conditions, the above decomposition of $P$ involves a family of the simple ideals of $P$.
Keywords:
infinite-dimensional Malcev Poisson algebra, root, structure theory.
Received: 04.08.1919 Revised: 31.01.2021 Accepted: 24.02.2021
Citation:
J. M. Sánchez, “On split Malcev Poisson algebras”, Sibirsk. Mat. Zh., 62:3 (2021), 629–639; Siberian Math. J., 62:3 (2021), 511–520
Linking options:
https://www.mathnet.ru/eng/smj7583 https://www.mathnet.ru/eng/smj/v62/i3/p629
|
Statistics & downloads: |
Abstract page: | 155 | Full-text PDF : | 38 | References: | 26 | First page: | 3 |
|