Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2021, Volume 62, Number 3, Pages 555–562
DOI: https://doi.org/10.33048/smzh.2021.62.307
(Mi smj7576)
 

The universality of some compositions on short intervals

A. Laurinčikas

Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University, Vilnius, Lithuania
References:
Abstract: We obtain approximation theorems for analytic functions by the shifts $F(\zeta(s+i\tau))$ with $\tau \in {\Bbb R}$, where $\zeta(s)$ is the Riemann $\zeta$-function, while $F$ is some operator on the space of analytic functions, on short intervals $[T,T+H]$ with $T^{1/3}(\log T)^{26/15}\leq H\leq T$ as $T\to\infty$.
Keywords: Riemann $\zeta$-function, space of analytic functions, Voronin theorem, universality.
Funding agency Grant number
European Science Foundation 09.3.3-LMT-K-712-01-0037
The research was funded by the European Social Fund according to the activity “Improvement of Researchers’ Qualification by Implementing World-Class R&D Projects” (Grant 09.3.3–LMT–K–712–01–0037).
Received: 25.12.2020
Revised: 25.12.2020
Accepted: 22.01.2021
English version:
Siberian Mathematical Journal, 2021, Volume 62, Issue 3, Pages 449–454
DOI: https://doi.org/10.1134/S0037446621030071
Bibliographic databases:
Document Type: Article
UDC: 511.32
MSC: 35R30
Language: Russian
Citation: A. Laurinčikas, “The universality of some compositions on short intervals”, Sibirsk. Mat. Zh., 62:3 (2021), 555–562; Siberian Math. J., 62:3 (2021), 449–454
Citation in format AMSBIB
\Bibitem{Lau21}
\by A.~Laurin{\v{c}}ikas
\paper The universality of some~compositions on short intervals
\jour Sibirsk. Mat. Zh.
\yr 2021
\vol 62
\issue 3
\pages 555--562
\mathnet{http://mi.mathnet.ru/smj7576}
\crossref{https://doi.org/10.33048/smzh.2021.62.307}
\elib{https://elibrary.ru/item.asp?id=46850998}
\transl
\jour Siberian Math. J.
\yr 2021
\vol 62
\issue 3
\pages 449--454
\crossref{https://doi.org/10.1134/S0037446621030071}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000655743500007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85107007594}
Linking options:
  • https://www.mathnet.ru/eng/smj7576
  • https://www.mathnet.ru/eng/smj/v62/i3/p555
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ñèáèðñêèé ìàòåìàòè÷åñêèé æóðíàë Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:158
    Full-text PDF :42
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024