|
Automorphisms of the Gersten group
F. A. Dudkinab, E. A. Shaporinac a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Omsk Division of the Sobolev Institute of Mathematics, Omsk, Russia
c Novosibirsk State University, Novosibirsk, Russia
Abstract:
The Gersten group $G$ is the split extension $F_3\rtimes_\varphi{\Bbb Z}$ of the free group $F_3$ with basis $\{a,b,c\}$ by the automorphism $\varphi: a\mapsto a, b\mapsto ba, c\mapsto ca^2$. We describe the generators and structure of the group $\operatorname{Out}(G)$ and prove that $\operatorname{Out}(G)\cong(F_3\times{\Bbb Z}^3)\rtimes({\Bbb Z}_2\times{\Bbb Z}_2)$.
Keywords:
free group, automorphism, outer automorphism group, Gersten group.
Received: 09.06.2020 Revised: 26.12.2020 Accepted: 24.02.2021
Citation:
F. A. Dudkin, E. A. Shaporina, “Automorphisms of the Gersten group”, Sibirsk. Mat. Zh., 62:3 (2021), 514–524; Siberian Math. J., 62:3 (2021), 413–422
Linking options:
https://www.mathnet.ru/eng/smj7573 https://www.mathnet.ru/eng/smj/v62/i3/p514
|
|