Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2021, Volume 62, Number 3, Pages 498–508
DOI: https://doi.org/10.33048/smzh.2021.62.302
(Mi smj7571)
 

A tight description of $3$-polytopes by their major $3$-paths

O. V. Borodin, A. O. Ivanova

Sobolev Institute of Mathematics, Novosibirsk, Russia
References:
Abstract: A $3$-path $uvw$ in a $3$-polytope is an $(i,j,k)$-path if $d(u)\le i$, $d(v)\le j$, and $d(w)\le k$, where $d(x)$ is the degree of a vertex $x$. It is well known that each $3$-polytope has a vertex of degree at most $5$ called minor. A description of $3$-paths in a $3$-polytope is minor or major if the central item of its every triplet is at least $6$. Back in 1922, Franklin proved that each $3$-polytope with minimum degree $5$ has a $(6,5,6)$-path which description is tight. In 2016, we proved that each polytope with minimum degree $5$ has a $(5,6,6)$-path which is also tight. For arbitrary $3$-polytopes, Jendrol' (1996) gave the following description of $3$-paths:
$$ \{(10,3,10), (7,4,7),(6,5,6),(3,4,15),(3,6,11),(3,8,5),(3,10,3),(4,4,11),(4,5,7),(4,7,5)\}, $$
but it is unknown whether the description is tight or not. The first tight description of $3$-paths was obtained in 2013 by Borodin et al.:
$$ \{(3,4,11), (3,7,5), (3,10,4), (3,15,3), (4,4,9), (6,4,8), (7,4,7), (6,5,6)\}. $$
Another tight description was given by Borodin, Ivanova, and Kostochka in 2017:
$$ \{(3,15,3), (3,10,4), (3,8,5), (4,7,4), (5,5,7), (6,5,6), (3,4,11), (4,4,9), (6,4,7)\}. $$
The purpose of this paper is to obtain the following major tight descriptions of $3$-paths for arbitrary $3$-polytopes:
$$ \{(3,18,3),(3,11,4),(3,8,5),(3,7,6),(4,9,4),(4,7,5),(5,6,6)\}. $$
Keywords: plane graph, $3$-polytope, structural properties, $3$-path, tight description.
Funding agency Grant number
Russian Science Foundation 16-11-10054
This work was funded by the Russian Science Foundation (Grant 16–11–10054).
Received: 29.09.2020
Revised: 21.01.2021
Accepted: 22.01.2021
English version:
Siberian Mathematical Journal, 2021, Volume 62, Issue 3, Pages 400–408
DOI: https://doi.org/10.1134/S0037446621030022
Bibliographic databases:
Document Type: Article
UDC: 519.17
Language: Russian
Citation: O. V. Borodin, A. O. Ivanova, “A tight description of $3$-polytopes by their major $3$-paths”, Sibirsk. Mat. Zh., 62:3 (2021), 498–508; Siberian Math. J., 62:3 (2021), 400–408
Citation in format AMSBIB
\Bibitem{BorIva21}
\by O.~V.~Borodin, A.~O.~Ivanova
\paper A~tight description of $3$-polytopes by their major $3$-paths
\jour Sibirsk. Mat. Zh.
\yr 2021
\vol 62
\issue 3
\pages 498--508
\mathnet{http://mi.mathnet.ru/smj7571}
\crossref{https://doi.org/10.33048/smzh.2021.62.302}
\elib{https://elibrary.ru/item.asp?id=46793878}
\transl
\jour Siberian Math. J.
\yr 2021
\vol 62
\issue 3
\pages 400--408
\crossref{https://doi.org/10.1134/S0037446621030022}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000655743500002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85107210005}
Linking options:
  • https://www.mathnet.ru/eng/smj7571
  • https://www.mathnet.ru/eng/smj/v62/i3/p498
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024