Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2021, Volume 62, Number 2, Pages 250–268
DOI: https://doi.org/10.33048/smzh.2021.62.202
(Mi smj7554)
 

Heights of minor faces in 3-polytopes

O. V. Borodin, A. O. Ivanova

Sobolev Institute of Mathematics, Novosibirsk, Russia
References:
Abstract: Each 3-polytope has obviously a face $f$ of degree $d(f)$ at most 5 which is called minor. The height $h(f)$ of $f$ is the maximum degree of the vertices incident with $f$. A type of a face $f$ is defined by a set of upper constraints on the degrees of vertices incident with $f$. This follows from the double $n$-pyramid and semiregular $(3,3,3,n)$-polytope, $h(f)$ can be arbitrarily large for each $f$ if a 3-polytope is allowed to have faces of types $(4,4,\infty)$ or $(3,3,3,\infty)$ which are called pyramidal. Denote the minimum height of minor faces in a given 3-polytope by $h$. In 1996, Horňák and Jendrol' proved that every 3-polytope without pyramidal faces satisfies $h\le39$ and constructed a 3-polytope with $h=30$. In 2018, we proved the sharp bound $h\le30$. In 1998, Borodin and Loparev proved that every 3-polytope with neither pyramidal faces nor $(3,5,\infty)$-faces has a face $f$ such that $h(f)\le20$ if $d(f)=3$, or $h(f)\le11$ if $d(f)=4$, or $h(f)\le5$ if $d(f)=5$, where bounds 20 and 5 are best possible. We prove that every 3-polytope with neither pyramidal faces nor $(3,5,\infty)$-faces has $f$ with $h(f)\le20$ if $d(f)=3$, or $h(f)\le10$ if $d(f)=4$, or $h(f)\le5$ if $d(f)=5$, where all bounds 20, 10, and 5 are best possible.
Keywords: graph, plane graph, 3-polytope, structural properties, minor face, degree, height, weight.
Funding agency Grant number
Russian Science Foundation 16-11-10054
This work was funded by the Russian Science Foundation (Grant 16–11–10054).
Received: 31.08.2020
Revised: 14.11.2020
Accepted: 18.11.2020
English version:
Siberian Mathematical Journal, 2021, Volume 62, Issue 2, Pages 199–214
DOI: https://doi.org/10.1134/S0037446621020026
Bibliographic databases:
Document Type: Article
UDC: 519.17
MSC: 35R30
Language: Russian
Citation: O. V. Borodin, A. O. Ivanova, “Heights of minor faces in 3-polytopes”, Sibirsk. Mat. Zh., 62:2 (2021), 250–268; Siberian Math. J., 62:2 (2021), 199–214
Citation in format AMSBIB
\Bibitem{BorIva21}
\by O.~V.~Borodin, A.~O.~Ivanova
\paper Heights of minor faces in 3-polytopes
\jour Sibirsk. Mat. Zh.
\yr 2021
\vol 62
\issue 2
\pages 250--268
\mathnet{http://mi.mathnet.ru/smj7554}
\crossref{https://doi.org/10.33048/smzh.2021.62.202}
\elib{https://elibrary.ru/item.asp?id=46832386}
\transl
\jour Siberian Math. J.
\yr 2021
\vol 62
\issue 2
\pages 199--214
\crossref{https://doi.org/10.1134/S0037446621020026}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000635714500002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85103969954}
Linking options:
  • https://www.mathnet.ru/eng/smj7554
  • https://www.mathnet.ru/eng/smj/v62/i2/p250
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:217
    Full-text PDF :28
    References:33
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024