|
A new characterization of finite $\sigma$-soluble $P\sigma T$-groups
Yu. Maoa, X. Maa, W. Guob a Institute of Quantum Information Science, Shanxi Datong University,
Datong, P. R. China
b School of Science, Hainan University, Haikou, P. R. China
Abstract:
We prove that $G$ is a finite $\sigma$-soluble group with transitive
$\sigma$-permutability if and only if the following hold:
(i) $G$ possesses a complete Hall $\sigma$-set
$\mathcal{H}=\{H_{1}, \dots , H_{t}\}$ and a normal subgroup $N$ with
$\sigma$-nilpotent quotient $G/N$ such that $H_{i}\cap N\leq
Z_{\mathfrak{U}}(H_{i})$ for all $i$; and (ii) every $\sigma _{i}$-subgroup of $G$
is $\tau_{\sigma}$-permutable in $G$ for all $\sigma _{i}\in \sigma (N)$.
Keywords:
finite group, $P\sigma T$-group, $\tau_{\sigma}$-permutable subgroup, $\sigma$-soluble group, $\sigma$-nilpotent group.
Received: 14.05.2020 Revised: 17.06.2020 Accepted: 10.08.2020
Citation:
Yu. Mao, X. Ma, W. Guo, “A new characterization of finite $\sigma$-soluble $P\sigma T$-groups”, Sibirsk. Mat. Zh., 62:1 (2021), 131–143; Siberian Math. J., 62:1 (2021), 105–113
Linking options:
https://www.mathnet.ru/eng/smj7543 https://www.mathnet.ru/eng/smj/v62/i1/p131
|
Statistics & downloads: |
Abstract page: | 216 | Full-text PDF : | 36 | References: | 33 | First page: | 1 |
|