|
On the coincidence of the classes of finite groups $E_{\pi_x}$ and $D_{\pi_x}$
K. A. Ilenko, N. V. Maslova Krasovskii Institute of Mathematics and Mechanics, Yekaterinburg, Russia
Abstract:
Let $\pi_x$ be the set of primes greater than $x$. We prove that for all
$x\in {\Bbb R}$ the classes of finite groups $D_{\pi_x}$ and $E_{\pi_x}$
coincide; i.e., a finite group $G$ possesses a $\pi_x$-Hall subgroup if and only
if $G$ satisfies the complete analog of the Sylow Theorems for a $\pi_x$-subgroup.
Keywords:
$\pi$-Hall subgroup, Sylow properties, classes $E_{\pi_x}$, $C_{\pi_x}$, and $D_{\pi_x}$.
Received: 28.04.2020 Revised: 26.10.2020 Accepted: 18.11.2020
Citation:
K. A. Ilenko, N. V. Maslova, “On the coincidence of the classes of finite groups $E_{\pi_x}$ and $D_{\pi_x}$”, Sibirsk. Mat. Zh., 62:1 (2021), 55–64; Siberian Math. J., 62:1 (2021), 44–51
Linking options:
https://www.mathnet.ru/eng/smj7537 https://www.mathnet.ru/eng/smj/v62/i1/p55
|
|