Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2021, Volume 62, Number 1, Pages 19–30
DOI: https://doi.org/10.33048/smzh.2021.62.102
(Mi smj7534)
 

This article is cited in 3 scientific papers (total in 3 papers)

Multivalued quasimöbius mappings from circle to circle

V. V. Aseev

Sobolev Institute of Mathematics, Novosibirsk, Russia
Full-text PDF (461 kB) Citations (3)
References:
Abstract: We prove that if a multivalued mapping $F$ of circle to circle has the $\eta$-BAD property (bounded distortion of generalized angles with control function $\eta$) then there exist a positive integer $N$ and a quasimöbius homeomorphism $\varphi$ of a circle into itself such that the left inverse mapping to $F$ is of the form $(\varphi(z))^N$. Moreover, $\varphi$ is a locally $\omega$-quasimöbius mapping with $\omega$ depending only on $\eta$ and $N$.
Keywords: quasimöbius mapping, quasisymmetric mapping, multivalued mapping, generalized angle, BAD property, local quasimöbius property.
Funding agency Grant number
Siberian Branch of Russian Academy of Sciences 1.1.2, проект № 0314-2019-0007
The work was carried out in the framework of the State Task to the Sobolev Institute of Mathematics (Project 0314–2019–0007).
Received: 20.05.2020
Revised: 21.08.2020
Accepted: 09.10.2020
English version:
Siberian Mathematical Journal, 2021, Volume 62, Issue 1, Pages 14–22
DOI: https://doi.org/10.1134/S003744662101002X
Bibliographic databases:
Document Type: Article
UDC: 517.54
Language: Russian
Citation: V. V. Aseev, “Multivalued quasimöbius mappings from circle to circle”, Sibirsk. Mat. Zh., 62:1 (2021), 19–30; Siberian Math. J., 62:1 (2021), 14–22
Citation in format AMSBIB
\Bibitem{Ase21}
\by V.~V.~Aseev
\paper Multivalued quasim\"obius mappings from circle to circle
\jour Sibirsk. Mat. Zh.
\yr 2021
\vol 62
\issue 1
\pages 19--30
\mathnet{http://mi.mathnet.ru/smj7534}
\crossref{https://doi.org/10.33048/smzh.2021.62.102}
\elib{https://elibrary.ru/item.asp?id=44978713}
\transl
\jour Siberian Math. J.
\yr 2021
\vol 62
\issue 1
\pages 14--22
\crossref{https://doi.org/10.1134/S003744662101002X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000613460200002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85099995280}
Linking options:
  • https://www.mathnet.ru/eng/smj7534
  • https://www.mathnet.ru/eng/smj/v62/i1/p19
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:219
    Full-text PDF :38
    References:41
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024