Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2021, Volume 62, Number 1, Pages 3–18
DOI: https://doi.org/10.33048/smzh.2021.62.101
(Mi smj7533)
 

This article is cited in 5 scientific papers (total in 5 papers)

Rings over which matrices are sums of idempotent and $q$-potent matrices

A. N. Abyzov, D. T. Tapkin

Kazan (Volga Region) Federal University, Kazan, Russia
Full-text PDF (484 kB) Citations (5)
References:
Abstract: We study the rings over which each square matrix is the sum of an idempotent matrix and a $q$-potent matrix. We also show that if $F$ is a finite field not isomorphic to $\Bbb{F}_3$ and $q>1$ is odd then each square matrix over $F$ is the sum of an idempotent matrix and a $q$-potent matrix if and only if $q-1$ is divisible by $| F | -1$.
Keywords: idempotent, $q$-potent, Frobenius normal form.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2020-1478
This work was supported by the Volga Region Research and Education Center of Mathematics (Project No. 075–02–2020–1478).
Received: 11.05.2020
Revised: 01.06.2020
Accepted: 17.06.2020
English version:
Siberian Mathematical Journal, 2021, Volume 62, Issue 1, Pages 1–13
DOI: https://doi.org/10.1134/S0037446621010018
Bibliographic databases:
Document Type: Article
UDC: 512.55
Language: Russian
Citation: A. N. Abyzov, D. T. Tapkin, “Rings over which matrices are sums of idempotent and $q$-potent matrices”, Sibirsk. Mat. Zh., 62:1 (2021), 3–18; Siberian Math. J., 62:1 (2021), 1–13
Citation in format AMSBIB
\Bibitem{AbyTap21}
\by A.~N.~Abyzov, D.~T.~Tapkin
\paper Rings over which matrices are sums of idempotent and $q$-potent matrices
\jour Sibirsk. Mat. Zh.
\yr 2021
\vol 62
\issue 1
\pages 3--18
\mathnet{http://mi.mathnet.ru/smj7533}
\crossref{https://doi.org/10.33048/smzh.2021.62.101}
\elib{https://elibrary.ru/item.asp?id=44975402}
\transl
\jour Siberian Math. J.
\yr 2021
\vol 62
\issue 1
\pages 1--13
\crossref{https://doi.org/10.1134/S0037446621010018}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000613460200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85100100986}
Linking options:
  • https://www.mathnet.ru/eng/smj7533
  • https://www.mathnet.ru/eng/smj/v62/i1/p3
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:274
    Full-text PDF :83
    References:45
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024